◎正当な理由による書き込みの削除について:      生島英之とみられる方へ:

分からない問題はここに書いてね442 YouTube動画>1本 ->画像>31枚


動画、画像抽出 || この掲示板へ 類似スレ 掲示板一覧 人気スレ 動画人気順

このスレへの固定リンク: http://5chb.net/r/math/1522418128/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

1132人目の素数さん2018/03/30(金) 22:55:28.81ID:bRABDfuS
さあ、今日も1日がんばろう★☆

前スレ
分からない問題はここに書いてね441
http://2chb.net/r/math/1519050603/

2132人目の素数さん2018/03/30(金) 22:59:44.08ID:pEZuT42v
      ___
      /:::::::::::::::::::ヽ
      l/^_,ヽ,_:::::::::::)   1乙
     从 ・ω・) ̄´    チャーハンなんて数学やらずに作ってられっかよ
     /~ヽ ; i )
     (⌒'J⊂ノ⌒)
    (_)  (_)

3132人目の素数さん2018/03/31(土) 00:14:44.54ID:AY7W5Ajf
削除依頼を出しました

4132人目の素数さん2018/03/31(土) 00:37:41.90ID:zleFolVp
劣等感は足を引っ張るしか出来ない

5132人目の素数さん2018/03/31(土) 01:08:43.13ID:plgJ3Wdt
前スレ

http://2chb.net/r/math/1519050603/999
素晴らしい発想

結果的に
http://2chb.net/r/math/1519050603/939
の 9k^2+ak が平方数になる a、k は無数にあることになる。

6132人目の素数さん2018/03/31(土) 01:19:19.48ID:CVxugzwa
『複素積分によりある範囲のfの定積分の値が求められるなら、それは何かしらの工夫によって実数のリーマン積分でも求められる』
は真ですか?

7132人目の素数さん2018/03/31(土) 01:22:14.33ID:+6ykirvk
fとはなんぞや?

8132人目の素数さん2018/03/31(土) 02:32:01.30ID:N4HDtrnR
「三角形ABCにおいて、CA=BC=a、辺CA上に点P、辺BC上に点Qがある。三角形CPQが三角形ABCの1/4となるような線分PQ上の点の領域を求めよ」
三角形ABCが鈍角三角形の場合も含めてどうなるか教えてください

9132人目の素数さん2018/03/31(土) 09:01:54.68ID:eMUGV7fL
ek + 9kk が平方数にならないことが証明できません。
kは正整数で、eは整数(e≠0)です。
[前スレ.939,941]

e = -8k のとき k^2
e = -5k のとき (2k)^2
e = 7k のとき (4k)^2
e = 16k のとき (5k)^2
e = bb-9k のとき kb^2 (b≠0,kは平方数に限る)
e = b(b±6√k) のとき k(b±3√k)^2 (kは平方数に限る)
[前スレ.956]

10132人目の素数さん2018/03/31(土) 09:43:16.06ID:eMUGV7fL
〔問題983〕
実数 0 < x < π/6 < y < π/2 に対して、 不等式
 sin(x)/sin(y) < 2x/(x+y)
を示せ。
[前スレ.983]

11132人目の素数さん2018/03/31(土) 09:57:03.36ID:eMUGV7fL
>>9

e = (nn-9)k (nは自然数)
e = bb-9k,b(b±6√k) (b≠0,kは平方数に限る)

12132人目の素数さん2018/03/31(土) 13:26:08.61ID:zleFolVp
>>6
ルベーグ積分可能でもリーマン積分可能とは限らん

13132人目の素数さん2018/03/31(土) 13:45:50.49ID:O6tTMW7A
「fの定積分」はリーマン積分なんだろうよ。
それよりも「求められる」の意味が問題かな。
普通に考えれば
「何かしらの工夫」なんて要らないものな。

14132人目の素数さん2018/03/31(土) 17:51:42.00ID:w2cVcqjg
過疎ってるのでココで質問します

代数学総合スレッド Part6
http://2chb.net/r/math/1310723434/

ここの>>283への回答をお願いします
一意性がわかりません

15132人目の素数さん2018/03/31(土) 18:27:17.44ID:dl2/ueFR
統一場理論って、数学の理論ですよね
アインシュタインもうまくいかなかった、この考えって、何でしょうね

16132人目の素数さん2018/03/31(土) 19:48:19.50ID:vlW/m53/
ℤ を有理整数環とする.

Spec ℤ 上 proper かつ smooth な scheme で非自明な例はありますか?
ℤ 上の射影空間(P_Z)^nや,
ℤ 上すべての素点で不分岐な整数環O_K上の射影空間
以外の例を探しています.

17132人目の素数さん2018/03/31(土) 20:57:03.26ID:zleFolVp
「ですよね」は前提から間違ってる法則

18132人目の素数さん2018/03/31(土) 21:21:54.53ID:CK3cTIrA
ですよねー

19132人目の素数さん2018/03/31(土) 21:48:33.90ID:O6tTMW7A
そだねー は商標とっちまったからな

20132人目の素数さん2018/03/31(土) 21:50:03.74ID:5eHUrUnY
そうっすね。ソースは?。

21132人目の素数さん2018/04/01(日) 00:42:04.94ID:qPmoRbsB
ネックレスって数珠数列なんですか?裏表あると思うんですけど

22132人目の素数さん2018/04/01(日) 01:13:03.85ID:noFB9/4S
>>8
問題文正確に書いてくれる?

23132人目の素数さん2018/04/01(日) 01:14:34.86ID:noFB9/4S
>>10
y固定して動かして、次にx固定して動かす、で解決
これでやってみ

24132人目の素数さん2018/04/01(日) 09:20:58.01ID:+r3Nl9DH
>>19
商標は区分が決まっているのだから
商標登録されたら全く使っていけないわけではないよ
そだねーという名前の文房具を出してもいいし
そだねーという名前の自動車を売ってもいい

25132人目の素数さん2018/04/01(日) 09:49:56.34ID:j1J0QhVU
問題というか英語でつまっているのですが、よろしくお願いします

Zを位相空間として 
Z is not reduced to a point
とはどういった意味でしょうか?

26132人目の素数さん2018/04/01(日) 09:53:11.52ID:57LdmLPK
Zはある点まで縮小されていない

27132人目の素数さん2018/04/01(日) 10:55:00.77ID:j1J0QhVU
ありがとうございます
具体的にはどういった意味でしょうか 数学的な定義というか
文脈で変わりますか?

28132人目の素数さん2018/04/01(日) 12:31:58.24ID:mQQNmeh1
>>10

0<x<y なので、与式を変形すると
2{sin(y) -sin(x)}/(y-x) > sin(x)/x,

左辺はyについて単調減少だから
2{1 -sin(x)}/(π/2 -x) > sin(x)/x,
ならば十分。そこで
f(x) = 2x{1 -sin(x)} - (π/2 -x)sin(x),
とおくと
f(0) = 0,f(π/6) = 0,
f "(x) = (x +π/2)sin(x) -2cos(x) ≦ π/3 -√3 < 0, (上に凸)
∴ f(x) > 0  (0<x<π/6)

29132人目の素数さん2018/04/01(日) 13:22:41.88ID:y8Aaojv8
わかりやすく教えて下さい

9km離れたところに行くのに、はじめの A kmを時速6キロで、残りを時速4キロで歩いて、2時間かかった。Aはいくらか?

30132人目の素数さん2018/04/01(日) 14:14:53.25ID:mQQNmeh1
>>29

A/6 + (9-A)/4 = 2,
12倍して
2A + 3(9-A) = 24,
27 - A = 24,
A = 3,

31132人目の素数さん2018/04/01(日) 14:36:28.31ID:y8Aaojv8
>>30
ありがとうございました。

32132人目の素数さん2018/04/01(日) 17:14:29.94ID:DqL4km0X
アホ晒し

115 名前:あるケミストさん[] 投稿日:2018/04/01(日) 03:44:27.94
余談だけど某板では
劣等感ババア=松坂君=ヒマラヤ
説が出てきたところだ

33132人目の素数さん2018/04/01(日) 17:34:07.34ID:lpZ6Vam/
そんなもん晒して誰が得するんだよ…

34132人目の素数さん2018/04/01(日) 17:34:13.19ID:VZyC02b7
物理板でもそれ系の書き込みあったよ

35132人目の素数さん2018/04/01(日) 19:03:49.76ID:1OvzOjRq
本人なんじゃないかな

36132人目の素数さん2018/04/01(日) 20:14:14.06ID:5wF8AWDh
まぁ、でも、俺の最大の目的は、東大理学部数学科に入ることなんかではなくて、
「無」になってもう二度と「有」にならないことなんだ。
どうすればこれを実現できるのか?
誰か教えてください。

37132人目の素数さん2018/04/01(日) 20:15:39.50ID:Sq5gTv4H
LNの位置ベクトルを求めよという問題で、位置ベクトルの公式?を使わずこつこつやったのですが、(画像2、3枚目です)やり方ってこれであってますでしょうか?
また、位置ベクトルの公式ははやめに覚えた方がいいのでしょうか?
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

38132人目の素数さん2018/04/01(日) 20:17:55.33ID:d/n8A4RI
公式というのは、時間を節約するためにあるんです
くだらない計算に余計な時間を費やすより公式でささっと終わらせた方が賢いですよね

39132人目の素数さん2018/04/01(日) 20:44:45.97ID:B/+yXvk6
>>37
やり方自体は間違いではない
内分点?の位置ベクトルの公式も同じような方法で求まるのだから
頑張って覚えるようなものではないのでは

ON↑=OA↑+t AB↑
= OA↑ +t (OB↑ - OA↑)
= (1-t)OA↑ +t OB↑
のような

40132人目の素数さん2018/04/01(日) 20:50:43.92ID:21GzroPL
公式の証明は、公式の本質を知る必要がある人以外いらないよね

41132人目の素数さん2018/04/01(日) 20:52:08.52ID:d/n8A4RI
入らなくはないですよ
自分で証明できる、少なくともその手順を知っている、ということは大事ですが、いちいち車輪の再発明を繰り返す必要はないだろうということです

42132人目の素数さん2018/04/01(日) 23:19:40.17ID:Sq5gTv4H
>>39
すいません、中点だと図的にすぐわかるのですが、内分点などの位置ベクトルは平行四辺形をどうやって使って求めればよいのでしょうか?
中点以外の位置ベクトルにも平行四辺形使える場合がありましたら、教えてほしいです

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

43132人目の素数さん2018/04/02(月) 00:48:31.33ID:QTiBZAaI
>>42
人に読ませたいなら、汚い字なりにも丁寧に書けよ、ゴミが!

44132人目の素数さん2018/04/02(月) 01:37:07.78ID:OMgy6Qga
生きる価値なし

45132人目の素数さん2018/04/02(月) 03:24:09.76ID:OMgy6Qga
a(n,k)=nCkとおく。
このとき、以下の命題の真偽を判定せよ。

「a(n^2,k^2)=f(a(n,k))となる整式f(x)が存在する」

46132人目の素数さん2018/04/02(月) 03:35:28.40ID:o0DFUrv4

n=4,k=2
n=6,k=1

47132人目の素数さん2018/04/02(月) 10:15:36.23ID:qYYBXa/1
>>10

y=π/2 で成り立てば、
 2{1-sin(x)}/(π/2 -x) > sin(x)/x,    >>28
 x/sin(x) > (π/2 +x)/2,
ならば十分。そこで
 g(x) = x/sin(x),
とおく。
|x|<π/2 で g(x) は下に凸。    … (*)
g(π/6)=π/3 と g(π/2)=π/2 を通る割線を曳く。
 z = (π/2 +x)/2,
-π/2 < x < π/6 のとき g(x) > (π/2 +x)/2,

(*)
1-cos(x) ≧ 0,
x-sin(x) = ∫[0,x] {1-cos(t)} dt > 0 (x>0)
sin(x)-x・cos(x) = ∫[0,x] t・sin(t) dt > 0 (0<x<4.4934094579)
より
g '(x) = {sin(x)-x・cos(x)}/sin(x)^2,
g "(x) = {1-cos(x)}/sin(x)・g '(x) + {1+cos(x)}{x-sin(x)}/sin(x)^3 > 0,

48132人目の素数さん2018/04/02(月) 11:10:05.25ID:OMgy6Qga
pを実数の定数とし、数列anをa1=p,a(n+1)=an-rで定める。
y=e^(-x)sinx

49132人目の素数さん2018/04/02(月) 11:19:12.56ID:OMgy6Qga
pを正の実数の定数とし、0<r≤1/kなる正の実数rと正整数nに対し数列a(n,r)を
a(1,r)=p,a(n+1,r)=an-r
で定める。
ただしkは正整数の定数である。

xy平面上の曲線C:y=e^(-x)sinxと、直線Dn:y=anの交点の個数をbnとおくとき、bnを最大とするrの範囲をpの式で表せ。

50132人目の素数さん2018/04/02(月) 12:23:35.64ID:qYYBXa/1
>>49

y = e^(-x) sin(x) より
y ' = e^(-x) {cos(x)-sin(x)} = e^(-x) (√2) sin(π/4 -x),

x_m = π/4 + m・π で極値 y_m = e^(-x_m) (-1)^m・sin(π/4) = C・{- e^(-π)}^m をとる。
(mが偶数のとき極大、mが奇数のとき極小)

ここに C = e^(-π/4)/√2 = 0.322396942…
 公比 -e^(-π) = -0.04321391826377…

さて、どうするか…

51132人目の素数さん2018/04/02(月) 15:35:27.13ID:7jljAony
{a1}=1/2, (n+1){an}=(n-1){a(n-1)}で定まる数列がある。{an}をnの式で表せ。
という問題で、別解にある解き方がわかりません
「2を底とする対数をとり、
log(2,n+1)+log(2,{an})=log(2,n-1)+log(2,{a(n-1)})
{bn}=log(2,{an})とおくと、
{bn}-{b(n-1)}=log(2,[(n-1)/(n+1)])
よって、{b(n+1)}-{bn}=log(2,n/(n+2))
この階差数列型の漸化式から、まず数列{bn}の 一般項を求め、{an}の一般項項を求める」
と、最後が省略されているのですが、どなたか教えていただけますでしょうか

52132人目の素数さん2018/04/02(月) 15:43:11.48ID:OMgy6Qga
>>51
両辺をΣ計算する感じで
(b2-b1)+(b3-b2)+(b4-b3)+...=
ってやってみると次々に項が消える

53132人目の素数さん2018/04/02(月) 16:55:44.99ID:OMgy6Qga
空間に2つの円
yz平面の円C:y^2+z^2=4
xy平面の円D:(x+1)^2+y^2=1
がある。
平面αt:y=2t(0≤t≤1)とy軸との交点をT、αtとCの共有点をそれぞれP,Q、PQが直径でTを中心とする円をEtとする。ただしt=1の場合、Etは点N(0,2,0)であるとする。
A(0,0,2)から、Dの周上の点L、Etの周上の点M、を経由して点Nに至る折れ線ALMNの長さの取りうる値の範囲を求めよ。

54132人目の素数さん2018/04/02(月) 21:56:43.68ID:ZjjiJzGw
ABC予想の意味が分かりません
a+b=cを満たす互いに素な自然数a.b.cニツイテ、任意のε>0に対してc>rad(abc)^(1+ε)を満たすものは有限個しか存在しない

rab(abc)は1より大きくなると思いますがそれを1+ε乗するとεがある値以上であれば絶対にc以上になりませんか?

ここでは
εはめっちゃ小さい数字という意味の記号なのですかね?

55132人目の素数さん2018/04/02(月) 23:06:06.16ID:ZafosQgd
× 「任意のε>0に対してc>rad(abc)^(1+ε)」を満たすものは有限個しか存在しない

○ 任意のε>0に対して「c>rad(abc)^(1+ε)を満たすものは有限個しか存在しない」

56132人目の素数さん2018/04/02(月) 23:41:21.25ID:qYYBXa/1
>>51

 (n+1)n・a_n = n(n-1)・a_{n-1} = … = 2・1・a_1 (=1)
2を底とする対数をとり、
 log{2,(n+1)n} + b_n = log{2,n(n-1)} + b_{n-1} = … = 1 + b_1 (=0)

57132人目の素数さん2018/04/03(火) 00:16:49.14ID:5qdIlU4R
>>53
これ傑作なんで解いてください

58132人目の素数さん2018/04/03(火) 00:17:52.76ID:gvbmiWKR
人間が怒りに支配されている時に思い浮かぶ数は7であるという。
これを数学的に証明するほう法を求む。

人間のテンポラリー記憶数を基礎にしても良い。

59132人目の素数さん2018/04/03(火) 01:17:09.65ID:9jk8wUV7
>>54
"独創的すぎる証明"「ABC予想」をその主張だけでも理解する
http://www.ajimatics.com/entry/2017/12/16/175035

60132人目の素数さん2018/04/03(火) 01:19:53.50ID:kEVVKfyO
>>53
ごめん
この手の問題は結構必ず解けるという意味で簡単な問題と思う。

61132人目の素数さん2018/04/03(火) 01:21:52.57ID:kEVVKfyO
定義域と値域をより精密に数式追っかけるだけで解けてしまう問題。

62132人目の素数さん2018/04/03(火) 01:36:52.84ID:5qdIlU4R
>>60
微分法だけでは上手く行かず、平面図形の考察も加える必要があり、結論の範囲も意外性があります

63132人目の素数さん2018/04/03(火) 01:47:49.26ID:XHiKAOO2
>>62
わかっている問題をここに書くのはスレチだろう
よそでやれ

64132人目の素数さん2018/04/03(火) 07:27:01.30ID:kEVVKfyO
>>62
誰も微分法使用するなんて一言も言ってない
もう一度言うが定義域と値域を精密に扱えば必ず解けてしまう問題

65132人目の素数さん2018/04/03(火) 12:11:39.35ID:5qdIlU4R
>>64
必ず解けてしまうけど、まだ解けてないから、解き方をご教授してね

66132人目の素数さん2018/04/03(火) 12:38:00.53ID:OzVudZXt
面倒くさいだけの問題かな

67132人目の素数さん2018/04/03(火) 13:13:13.06ID:idmtH5Pp
Sn(m)をmとnを用いて表せ

S0(m)=1、Sn(m)=ΣS(n-1)(k) 【k=1、m】

68132人目の素数さん2018/04/03(火) 13:38:57.60ID:ZyJ7pTTA
>>67
知らねーな
帰納法でもやってろ

69132人目の素数さん2018/04/03(火) 13:57:41.77ID:RjUb/qt3
>>47 (*)

f(x) = sin(x)/x とおくと、
0 < x <π で f(x) > 0,f '(x) = {x・cos(x)- sin(x)}/xx < 0,
|x|< 2.081575977818 で f "(x) = {(2-xx)sin(x) - 2x・cos(x)}/x^3 < 0,
∴ 補題により、
 g(x) = x/sin(x),g '(x) > 0,g "(x) > 0,

〔補題〕
f(x)g(x) = 1ならば
 f '(x)g '(x) < 0,
さらに f(x)f "(x) < 0 のとき
 f "(x)g "(x) < 0,

(略証)
 g '(x) = -f '(x)/f(x)^2,
 g "(x) = {-f(x)f "(x) + 2f '(x)f '(x)}/f(x)^3,

70132人目の素数さん2018/04/03(火) 14:18:19.71ID:RjUb/qt3
>>67

S_n(m) = C(n+m-1,n) = (n+m-1)!/{n! (m-1)!}


S_{n-1}(k) = C(n+k-2,n-1) = C(n+k-1,n) - C(n+k-2,n)   (k≧2)
S_{n-1}(1) = C(n-1,n-1) = 1,
k=1〜m でたす。

71132人目の素数さん2018/04/03(火) 15:02:24.11ID:88PZSnvr
3次関数の点Pの接線に点Pで交わる法線が3次関数と重解になるような特殊な3次関数はありませんよね?
あ、点Pで重解になる3次関数です

72132人目の素数さん2018/04/03(火) 15:28:46.35ID:7PP01DNT
法線が重解になるとか何言っとるのだ、ちみは

73132人目の素数さん2018/04/03(火) 15:39:09.97ID:Ro6u6SPB
青チャ数V練習99です。
a1=2, n>=2で、anが以下の漸化式のとき、数列{an}の極限を求めよ。

74732018/04/03(火) 15:45:15.04ID:Ro6u6SPB
解法ははさみうちなんですが、はさみうちより漸化式の変形について教えて下さい。
二項漸化式なので、an+1 = an = x とかっておいて、x=1, 1/4 となりますが、
解答では変形された式が
an - 1 = 3/2 (√(an-1) - 1)
となっていますが、この変形の仕方の根拠がわかりません。
一般的な解き方では、特性方程式で出た2つの解α、βを使って、
an - α = β(an-1 - α)
というような形になるのではないんでしょうか?
1/4はどこに行ったの?なぜ係数3/2をそのまま使うの?

75132人目の素数さん2018/04/03(火) 15:47:57.71ID:CjjL5CTo

76732018/04/03(火) 15:48:29.17ID:Ro6u6SPB
ちなみに、ルートがあるからといって両辺の底が2の対数をとってもうまくできませんね。。

77132人目の素数さん2018/04/03(火) 15:51:41.42ID:MAaOwLDu
>>72
魑魅魍魎に憑りつかれておりました

78132人目の素数さん2018/04/03(火) 16:52:46.66ID:MAaOwLDu
>>74
a_1=1/8 だったらどうなるかを考えてみるとよいかもしれない。。

79132人目の素数さん2018/04/03(火) 17:44:02.52ID:ZyJ7pTTA
この形の漸化式の一般項を初等的な式で表すことはできますか?

80732018/04/03(火) 18:29:18.33ID:Ro6u6SPB
>>78
1/8だとすると?わかりません(´;ω;`)
誘導の前問で、a_n > 1 がわかっている状態です。
一般項を出す必要はない(というか、高校の範囲では出せない)
けど、最初の漸化式の変形にどうやってもっていくのかがわからないのです。
二項漸化式だけど、
a_n - α = β(a_n-1 - α)
とは別のパターンですよね。これはどういうパターンなんですか?

81132人目の素数さん2018/04/03(火) 18:48:15.58ID:ZyJ7pTTA
>>80
漸化式の変形の考え方を書いとく
殆ど思考の流れで、公式じゃないからインスタントに使えるもんではないと思っといて

・この漸化式のanが収束するとしたら、anもan-1も同じ値になるとみなせる

・てことで、an=an-1=tとおいて代入すると、
t=(3/2)√t-1
2t^2-3t+1=0
t=1,1/2

・問題文よりanは1より大きいので、収束するとしたら1しかない。なぜなら1/2に収束すると仮定すると、超大きなnの時にanは1/2に極めて近くなければいけないから。

・よって極限値として1しか可能性がないことは分かった。
そこで両辺から1を引いてやることで、極限値を0にできる形が作れる。それによって不等式の評価や式の操作がしやすくなる。以上。

ちなみにこれはどのパターンにも使える考え方ではない。
例えば数列a1=1,a(n+1)=an+(1/n!)はe-1に収束するが、漸化式作って両辺からe-1を引いても得られるものは何もない
あくまで「ルートの入ったタイプの漸化式の極限の攻略法」な

82132人目の素数さん2018/04/03(火) 18:54:46.65ID:ZyJ7pTTA
>>80
このタイプは「解けない漸化式」とか参考書に書いてあるけど、大学行けば分かるが漸化式なんて基本的に解けないものばかり。
高校数学はその中の「数少ない解ける漸化式」について勉強してるわけ。だから漸化式に対してうまい式変形ができる場合は極めて限られてると思っていい。
今回も解けないけど、「極限を求めやすいように変形できるだけ、十分にマシ」な漸化式だと思っておくといい

例えばこの漸化式なんて解ける気しないでしょ。
an+1=sin(an)+an+3

83132人目の素数さん2018/04/03(火) 20:00:00.70ID:zX5ZUSLC
>>80
パターンとか馬鹿なこと言ってるがそんなものないよ。

84132人目の素数さん2018/04/03(火) 20:10:46.02ID:HfxhsoBT
今日は4/3ということは球の体積(4/3)πr^3の日ですね(謎)
ということで1問。

半径rの球B1がある。
この球B1に体積が最大になるように円錐Aを内接させる。
さらに、円錐A内に体積が最大になるように球B2を内接させる。

円錐Aを球B1内で動かすとき、
球B2の通過し得る領域の体積は球B1全体の体積の20%より大きいか?

85132人目の素数さん2018/04/03(火) 20:20:29.82ID:MAaOwLDu
>>80
> けど、最初の漸化式の変形にどうやってもっていくのかがわからないのです。

折角収束値の候補1がみつかったのだから、両辺から1を引いて a_n - 1 を作ってみる、なんて発想は出てこないのかな?
そうすれば a_n - 1 = 3/2 (√(a_(n-1)) - 1) は自然に導かれる。

86132人目の素数さん2018/04/03(火) 21:49:29.87ID:uxI0tY+B
>>84
超える。約26%になる。
円錐Aは、底円半径(2√2/3)r、高さ(4/3)rになる。
球B2は、中心が球B1の中心から{(2√3-3)/3}r、
半径が{(2√3-2)/3}rとなる。B2が掃く図形は、
B1と同じ中心を持ち、半径{(4√3-5)/3}rの球。
その体積はB1の体積の(164√3-845)/27≒0.26になる。

87132人目の素数さん2018/04/03(火) 23:18:23.53ID:88PZSnvr
ある点に関して
その点における法線=その点における接線
が成り立つということは考えられるだろうか?
これが私の主張なのですが実数解を持たない3次関数があると聞いたのでそのような3次関数が存在するのではないかと思い質問しました
記述の時に法線はその点で重解を持つことは無いとして良いのかどうかの確認をしたくて

88132人目の素数さん2018/04/03(火) 23:54:00.07ID:MAaOwLDu
自分自身と直角に交わる曲線でなら、
その交点において接線であり、かつその点において法線となる直線を考えることはできるな。
曲線の分岐というものを曖昧に処理すればの話だが。

89132人目の素数さん2018/04/04(水) 00:27:00.83ID:TdWGo+BE
>>87
接ベクトル⊥法ベクトル//法線=接線//接ベクトル
すなわち 接ベクトル⊥接ベクトル となるような
接ベクトルは存在し得ないけれど、
曲線が、ある一点で垂直に自己交差すればよいのでは?
レムニスケートの原点とかね。

90132人目の素数さん2018/04/04(水) 03:03:24.52ID:oRfOHhtr
見やすさの都合でここでは複素数wの共役複素数をw'と書く

(問題)
αを複素数の定数とする。
複素数zについての方程式
α(|z|+i)z+|α|(|z'+i|-α)z'=0
を解け。

91132人目の素数さん2018/04/04(水) 13:40:02.65ID:5kLPdo24
実成分と虚成分で表わして連立方程式にする

92132人目の素数さん2018/04/04(水) 15:01:15.79ID:oRfOHhtr
>>91
その方針では困難でした
複素数のままで複素数平面の性質を生かして解けないでしょうか

93132人目の素数さん2018/04/04(水) 20:20:24.82ID:s2aK44C5
z' は何?

94132人目の素数さん2018/04/04(水) 21:08:50.91ID:QT8S3aWG
あのさぁ…

95132人目の素数さん2018/04/04(水) 21:23:04.22ID:P5a4sCIV
ナニサァ・・

96132人目の素数さん2018/04/04(水) 21:35:44.30ID:c4jXYUQp
>>92
絶対値記号が囲む範囲や、カッコの位置、プラスマイナスの符号、共役記号の付け忘れ等に
写し間違いはないね?

97132人目の素数さん2018/04/04(水) 21:38:59.60ID:EmPoqxOk
>>92

α =|α|e^(ib),
z =|z|e^(iθ),
とおくと、
|z '+ i| =|z - i| = √(|z|^2 -2|z|sinθ +1),
なので
(|z|+ i)e^(2θi) + |z - i|e^(-bi) - |α| = 0,
う〜む

>>93
 >>90 の1行目を嫁

98132人目の素数さん2018/04/04(水) 21:56:33.58ID:5kLPdo24
||z|e^(-iθ)+i|=-(|z|+i)e^(2iθ+ib)+|α|e^(ib) となるから両辺が実数より
|z|=(|α|sin(b)-cos(2θ+b))/sin(2θ+b) が得られる
これを前の式に代入すればθを求める式になるけど解析的に解くのは無理っぽい
数値計算ならどうにでもなるが

99132人目の素数さん2018/04/04(水) 22:01:11.42ID:oWdSM6/e
>>90
元の問題の写真をアップできますか?

100132人目の素数さん2018/04/04(水) 22:15:46.81ID:zmato7R5
スレチ気味なの失礼

数値計算手法の一つである陰解法って陽解法とどう違うんだろう?まったく理解が進まん
陰解法での次ステップの状態を計算するには陽解法と違って次ステップでの値が含まれてる関係で行列の方程式?を解かなければならないらしいけど、その方程式で導く値がどう答えに結びついていくのかがわからない
(最終的にはC言語のプログラムに落とし込みたい。陽解法のプログラムはもう作ってあるんで多少なりとも流用できると楽なんだけどそう簡単にはいかんよね?)

101132人目の素数さん2018/04/04(水) 22:56:55.19ID:F2CNFB62
この解き方でも大丈夫でしょうか?

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

102132人目の素数さん2018/04/04(水) 23:04:58.71ID:KhTHPlZi
解き方はいいけど、場合分け漏れがあるわ用語使いがおかしいわで
字がきれいなのは◎

103132人目の素数さん2018/04/04(水) 23:09:03.41ID:F2CNFB62
>>102
実数解の個数0の時(0<a<1)のときも書いた方がいいですね
それと
2t-1で割るような式変形するならば、t=1/2とそれ以外とで場合わけするように書いた方がいいですね

他はオッケーでふか?

104132人目の素数さん2018/04/04(水) 23:14:05.19ID:KhTHPlZi
書いた方が良いではなくて、書かないと大幅減点の可能性あり
「t=1/2のときはわかりませんでした><」 と、「t=1/2を華麗にスルー」の差はでかい

105132人目の素数さん2018/04/05(木) 01:36:27.35ID:u7XbgblD
普通変数分離って言ったら101の分離の仕方f(t)=aを指すと思うけどなあ
確実に解けるし

106132人目の素数さん2018/04/05(木) 02:33:11.36ID:WGOUyYtT
これ、東京出版?
東京出版は、変数分離するときに「グラフで見やすい形にすればいい」って方針だから
固定された2次関数と、定点を通る直線の組み合わせにわけることは多かったはず。
分数関数より簡単な式を推奨してたような・・・
その辺は臨機応変に解答を作りやすい方法を選べばいいと思うよ

107132人目の素数さん2018/04/05(木) 03:14:12.30ID:IT7pbR6k
参考書は数IIIを学習していない人にも配慮して書いてあるんだろう
ただ数III知っててそちらの方法の方が楽だったり試験場でそれしか思い付かないなら使わない理由はないし、俺もそうする
>>103で自分で言ってる通りt=1/2さえ気を付ければ問題ないと思う

108132人目の素数さん2018/04/05(木) 09:32:04.35ID:w56lsgjY
無限大の空間が無限の無限乗の無限乗の無限乗の無限乗の・・・・(これが無限の無限乗の
無限乗の無限乗の・・・・(これが無限の無限乗の無限乗の無限乗の無限乗回続く
個あったらどんな感じになるのでしょうか?
また、それらが無限の無限乗の無限乗の無限乗の無限乗の・・・・・(これが無限の無限乗の
無限乗の無限乗回続く)速さで動いたらどんな感じになるのでしょうか?

109132人目の素数さん2018/04/05(木) 10:15:59.32ID:MR2yLXM+
閉じ括弧が足りませんよ

110132人目の素数さん2018/04/05(木) 12:12:31.75ID:nvf0ZyvT
神を超えるにはどうすれば良いですか?

111132人目の素数さん2018/04/05(木) 13:29:38.98ID:7kutkEvi
神が定義できませんよ

112132人目の素数さん2018/04/05(木) 14:05:05.15ID:Ogs6hB6l
妄想は超えられない

113132人目の素数さん2018/04/05(木) 17:20:22.86ID:HzQtVLov
次のような四面体ABCDは存在するか。

・辺BCの中点をL、CDの中点をM、DAの中点をNとするとき、AL⊥BC、BM⊥CD、BN⊥DA
・△ABMは正三角形

114132人目の素数さん2018/04/05(木) 17:29:28.43ID:PH+Gr2ry
>>100
http://www.cybernet.co.jp/ansys/glossary/inkaihou.html
http://www.cybernet.co.jp/ansys/glossary/youkaihou.html

差分化で消してる変数から違うから
初期値としてどの情報を使えるかによって
どちらを使うべきか変わる

115132人目の素数さん2018/04/05(木) 20:29:46.01ID:HzQtVLov
一辺の長さがkで、他の辺の長さがすべて1である四面体Vがある。以下の問いに答えよ、なお設問(1)と(2)との間に直接的な関連はない。

(1)実数kの取りうる値の範囲を求めよ。
(2)以下の条件をみたす平面αが少なくとも1つ存在することを説明せよ。すなわち、αにより切り分けられた2つの立体が合同であることを詳しく説明せよ。
「Vをαで切ると、切り分けられてできる2つの立体が合同になる」

116132人目の素数さん2018/04/05(木) 21:17:48.04ID:WRlWvc1F
神を操るにはどうすれば良いですか?

117132人目の素数さん2018/04/05(木) 22:58:08.09ID:hN3sJjEF
己がじし、自己を神と思へ

118132人目の素数さん2018/04/05(木) 23:05:07.70ID:DTitQ5x8
>>113

BM⊥CD より BC = BD > BM
 2等辺三角形BCDの等辺は、垂線BMより長い。

BN⊥DA より BD=AB
△ABMは正三角形より AB=BM
から BD = BM

これらは矛盾する。

∴4面体ABCDは存在しない。

119132人目の素数さん2018/04/05(木) 23:17:12.93ID:xZlWOBvW
なつい

120132人目の素数さん2018/04/05(木) 23:31:45.43ID:IvDDQ1uB
コイン投げを100回やって3連続で表が出た回数を求めるには、どうカウントすればよいのでしょうか
123、456・・・とカウントして99回まで?98、99、100と3連続表の場合は?

121132人目の素数さん2018/04/05(木) 23:33:39.13ID:HzQtVLov
>>118
ベクトルで計算しようとしてわけがわからなくなったのですが、平面図形でこんなに簡潔に解けるのですね。
ありがとうございます。

122132人目の素数さん2018/04/06(金) 00:01:05.26ID:mcNb5wbX
非不整数m,nを用いて 3m+5n=x で表せない1以上の自然数xを全て求めよ
っていう問題で
8,9,10 を表すことができるので11以上のxも8,9,10いずれかのときのmの値を変えることで作れるので7以下のxについて考える
7以下のxで 3の倍数、5の倍数を全て除くと x=1,2,4,7が残りこれらは全て3m+5n=x では表せないので求めるxは
x=1,2,4,7

という解き方(だいぶ省いてますが)をしたんですが模試や受験のときこういう解答でも大丈夫なんですかね?
模範解答とまったく違う感じなので不安になりました

123132人目の素数さん2018/04/06(金) 00:09:50.38ID:mcNb5wbX
一応8,9,10を表すm,nの組を具体的に提示して、後はn固定でmのみ動かせば、3で割った時の余りが0,1,2の8以上の整数すべてを表せるので、これで8以上すべての整数が尽くされる。
って書いて、あとは自分の答案で大丈夫ですかね?

124132人目の素数さん2018/04/06(金) 00:15:18.20ID:u3f84+cF
>>122
いいと思うよ
うるさいこと言えば、1、2、4、7が5m+3nの形で表されないことを説明する必要があるかもって感じ。

125132人目の素数さん2018/04/06(金) 00:18:57.64ID:NypUuaBN
>8,9,10 を表すことができるので11以上のxも8,9,10いずれかのときのmの値を変えることで作れるので7以下のxについて考える

m≧1、n≧1、ではないから、そんな事は言えない。



aとbが互いに素の時、ab+1以上の全ての自然数は、
ax+by(x、yは自然数)の形で表す事が出来る。

これの証明は、知られている事ではあるが、以下のようになる。

n≧ab+1を満たす自然数nに対して、n−a、n−2a、‥‥‥、n−ba、を、
bで割った余りは全て異なる。
従って、上のb個の自然数の中で、bで割り切れるものがある。
それを n−xaとすると、これはyb(yは自然数)の形で表される。
つまり、n−xa=yb → xa+yb =n

これを、“非負の整数”に限定すると、ab+1以上の全ての自然数 →
ab+1−a−b=(a−1)(b−1)に変わる。
つまり、(a−1)(b−1)以上の整数は全て、ax+by(x、yは非負の整数)の形で表される。
従って、(3−1)(5−1)=8だから、これらを確かめる事になる。

・x=7の時、x=3m+5n、では表せない。
・x=6の時、(m、n)=(2、0)であれば良い。
・x=5の時、(m、n)=(0、1)であれば良い。
・x=4の時、x=3m+5n、では表せない。
・x=3の時、(m、n)=(1、0)であれば良い。
・x=2の時、x=3m+5n、では表せない。
・x=1の時、x=3m+5n、では表せない。

以上から、x=1、2、4、7.

126132人目の素数さん2018/04/06(金) 00:23:40.15ID:mGkf3J9U
>>122
むしろこちらの方が自然な解答だと思う
その模試の解答は余りを使って分類してるのかな

127132人目の素数さん2018/04/06(金) 00:24:17.30ID:L8ME5L0/
何が模範解答か知らんが、
n=0,1,2 でやってみたほうが早いんじゃないの?

128132人目の素数さん2018/04/06(金) 01:17:30.88ID:nrTyHdT7
>>115

k = AD とする。
△ABC と △BCD は辺長1の正三角形。
BC⊥AD ゆえ ADをy軸、BCをz軸 としてよい。
A(√(3-kk)/2,-k/2,0)
B(0,0,-1/2)
C(0,0,1/2)
D(√(3-kk)/2,k/2,0)
と表わせる。

(1) 0 < k < √3
(2) x軸(∠AODの2等分線)の周りに180゚回せば重なり合う。(2回軸)
  α =(x軸を含む任意の平面)

129132人目の素数さん2018/04/06(金) 13:11:14.24ID:mGkf3J9U
半径aの円Aと半径rの円Bが点Pにおいて外接している。
2円の共通接線のうち、Pを通るものをl、Pを通らないものの1つをmとおく。
以下の問いに答えよ。
(1)mとA,Bとの共有点をそれぞれS,T、またlとmの交点をUとする。UはSTの中点であることを示せ。
(2)m、円A、円Bで囲まれる領域の面積をSrとおく。極限
lim[r→0] Sr/(US・UT)
を求めよ。

130132人目の素数さん2018/04/06(金) 16:47:34.46ID:KJy74EBD
お願いします。

(0,0)、(89,492)を通り、y=tan70°x+247と交わる、中心のy座標が0の円は存在するか?存在する場合、その円の半径はいくらか?

131132人目の素数さん2018/04/06(金) 16:52:03.70ID:sly5cN7J
>>130
(0,0)、(89,492)を通り、中心のy座標が0の円というのは1通りしかない
それを求めて条件に合うか調べるといいのでは?

132132人目の素数さん2018/04/06(金) 18:55:57.84ID:qr0yfHBC
「無」になってもう二度と「有」になりたくないのですが、どうすればそれを実現できますか?

133132人目の素数さん2018/04/06(金) 19:33:56.63ID:mGkf3J9U
>>130
円の方程式は簡単に出る
次に傾きのtan70°を不等式で評価して、不等式の下限と上限の場合の直線が確かに円を通ることを確認し、中間値の定理

134132人目の素数さん2018/04/06(金) 19:34:57.98ID:mGkf3J9U
>>129
お願いします

135132人目の素数さん2018/04/06(金) 19:36:29.10ID:sly5cN7J
>>132
額に油性マジックで「無」って書いとけ

136132人目の素数さん2018/04/06(金) 19:47:35.69ID:SD5x3m7c
>>135
真面目に教えてください。お願いします。

137132人目の素数さん2018/04/06(金) 21:52:19.34ID:mGkf3J9U
>>129
分からないのでお願いします
mと二円で囲まれた部分の面積が求められず、不等式で評価もできません
極限を計算する方法を教えてください

138132人目の素数さん2018/04/07(土) 02:11:29.95ID:cc8qjC1j
球x^2+y^2+z^2=4を平面α:y=-√3で切った立体の、座標の原点Oを含む側をCとする。
αによる球の切断面である円の中心をP、点(0,0,2)をQとする。
Cを直線PQの周りに一回転させてできる立体の体積を求めよ。

139132人目の素数さん2018/04/07(土) 02:20:39.14ID:cc8qjC1j
kを正の整数、pを0≦p<2k+1なる整数とする。
数列{an}を、
a1=k^2+p、a(n+1)=[√an]-1
と定める。
ただし[x]はxを超えない最大の整数を表す。

(1)anは減少数列であることを示せ。 (2)anがはじめて0になるnをkとpで表せ。

140132人目の素数さん2018/04/07(土) 03:30:51.85ID:Rok3UiT5
>>129
適当に相似拡大縮小して a = 1 としてよい
円A の中心を A として ∠ASU = θ とおく
SU も r も 面積も θ の式で表せる

141132人目の素数さん2018/04/07(土) 11:49:17.17ID:aq9OOH/h
合同・相似を使って解く中2-3問題で感覚的には50度かなとは思うんだけど説明出来ないの…

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

142132人目の素数さん2018/04/07(土) 12:54:21.84ID:ckXQQNiW
>>141
違うよ。

BDの中点をMとすると、Mは△ABDの外心で
AM=
∠AMD=

143132人目の素数さん2018/04/07(土) 13:15:52.91ID:aq9OOH/h
>>142
あ〜…AM=AC=6の二等辺三角形でX=40度ですか。
でもこれは合同・相似の問題なんですがその解き方でいいのかなぁ…?

144132人目の素数さん2018/04/07(土) 13:42:23.68ID:ujEIYMox
arctan1/3+arctan1/9

tanθ1=1/3, tanθ2=1/9
θ=θ1+θ2
tanθ=(tanθ1+tanθ2)/(1-tanθ1tanθ2)=(1/3+1/9)/(1-1/27)=6/13
θ=arctan(6/13)

これで間違ってませんかね

145132人目の素数さん2018/04/07(土) 14:16:04.45ID:ozKr5R4w
>>130

>>131 に従い、(0,0)を通る円の式を
(x-r)^2 + y^2 = r^2,
とする。
題意より点(89,492)を通るから
r = (89・89+492・492)/(2・89) = 249985/178 = 1404.410112359550

直線 -y・cos(70゚) + x・sin(70゚) + 247・cos(70゚) = 0
と円の中心 (r,0) の距離は
 0 + r・sin(70゚) + 247cos(70゚) = 1404.192794542818 < r
ゆえこれらは交わる。

交点は
(x,y) = (76.450742287334,457.046688134994)
    = (93.350268046508,503.477753557818)

146132人目の素数さん2018/04/07(土) 14:47:42.17ID:ozKr5R4w
>>143 (別解)

正弦定理で
 AD/sin(∠B) = BD,
 AD/sin(x) = AC/sin(∠ADC),
より
 sin(x) = (AD/AC)sin(∠ADC)
 = (BD/AC)sin(∠B)sin(∠DAB+∠B)
 = 2sin(∠B)sin(90゚+∠B) (← BD/AC =2,∠DAB=90゚)
 = 2sin(∠B)cos(∠B)
 = sin(2∠B),

∴ x = 2∠B,

147132人目の素数さん2018/04/07(土) 16:08:54.81ID:aq9OOH/h
>>146
ありがとうございます
ただ中2の合同・相似の単元なのでその解答ではないと思います

148132人目の素数さん2018/04/07(土) 17:48:35.38ID:oMI6zbFQ
cosθ+isinθ=e^iθって等式が上手く飲み込めない
マクローリン展開して比較っていう証明の流れは分かるんだけど

特に複素数平面上の点がre^iθで表せる事が納得いかないというかなんというか

どうやって理解すればいい?

149132人目の素数さん2018/04/07(土) 17:56:11.71ID:QQ/8W2fx
マクローリン展開云々のレベルに到達していないということです

そういうもんだ、と諦めましょう

150132人目の素数さん2018/04/07(土) 18:37:43.40ID:a9UYDUaR
>>148
cosθとsinθはθで2階微分すると係数-1が出て-cosθと-sinθになる
e^iθも2階微分すると-e^iθになる
いずれも微分方程式y"+y=0の解なので、それらを互いの線形結合で表すことができる、と考えると直感的には理解しやすいのではと

151132人目の素数さん2018/04/07(土) 18:47:30.45ID:lbezJtO1
関数論が分かっていないというだけの話

152132人目の素数さん2018/04/07(土) 18:51:48.82ID:m3fGFet8
>>141
>>142の方針でAM=BMを合同だか相似だかで証明したらいいのでは

153132人目の素数さん2018/04/07(土) 18:57:43.54ID:xtiE3PNd
パラメータθを動かすと複素平面(xy平面だとみなす)上の曲線がでてくるとおもうけど、それがどういうふうになるか考えると

微分してみると指数関数なので係数のi がかかったi e^iθになる
これは、xy平面では進行方向に90度をかけたものであり、これが、進行方向へ
加わる力となる
つまり、常に進行方向と垂直な同量の力が加わり続ける運動になるので奇跡は円
を描く
物理的にはこんなところ

154132人目の素数さん2018/04/07(土) 19:04:41.07ID:cc8qjC1j
複素平面って要らなくねー?
実在しないんだし
実在する座標平面と座標空間だけで解決できるだろ

155132人目の素数さん2018/04/07(土) 19:05:17.76ID:sST1TAxu
>>153
物理がわからないなら無理する必要はないですよ

156132人目の素数さん2018/04/07(土) 19:06:47.57ID:sST1TAxu
>>154
座標平面だって実在しません
あなたの身の回りにx軸は落ちてませんよね

157132人目の素数さん2018/04/07(土) 19:18:51.83ID:lbezJtO1
>>138
ゴミ

158132人目の素数さん2018/04/07(土) 19:19:08.42ID:lbezJtO1
>>139

159132人目の素数さん2018/04/07(土) 19:21:31.38ID:cc8qjC1j
>>158
解けないの?

160132人目の素数さん2018/04/07(土) 19:22:49.00ID:lbezJtO1
>>159
ゴミを知らないのか

161132人目の素数さん2018/04/07(土) 20:13:54.96ID:5ERYNF+j
>>148
飲み込む必要も納得する必要もない
証明が分かれば充分

162132人目の素数さん2018/04/07(土) 21:10:33.69ID:tE9TQ9Nk
>>156
いま、左の床を見てみたらx軸が落ちてたんですが…

163132人目の素数さん2018/04/07(土) 21:28:15.51ID:vNmvW/yd
>>162
よく見ろ。それは昨夜食った弁当の割り箸だ。

164132人目の素数さん2018/04/07(土) 21:28:45.71ID:oHpIpfwl
俺の体にはsex axisが付いてるけどな!
HAHAHA

165132人目の素数さん2018/04/07(土) 22:17:25.55ID:ozKr5R4w
>>148

 超越(実)函数の定義域を複素数に拡張する際、無頓着にやってしまうと、「zで微分する」等ができず不便。
そこで、まづ多項式、有理式で(任意の精度まで)近似し(マクローリン展開、ローラン展開)、それを複素化してΣするという方法を取る。
多項式や有理式は四則演算だけなので、複素化は容易である。

166132人目の素数さん2018/04/07(土) 22:23:25.66ID:7vaLagHl
>>162
惜しい! 「る」が邪魔だ

167132人目の素数さん2018/04/07(土) 22:23:26.76ID:ozKr5R4w
>>148
だから、e^x を複素化したものが周期2πiをもつ、なんてことは想像もできない。(日ごろ使いたおしているけれど)

168132人目の素数さん2018/04/07(土) 22:46:11.41ID:ozKr5R4w
>>165
 を満たせばzの多項式、有理式で(任意に)近似できる、という意味で「実函数に準じる扱いが可能」と期待される。
 それを「正則」と称して、それ以外の場合には目を瞑るのがふつう。

169132人目の素数さん2018/04/07(土) 23:15:32.26ID:sST1TAxu
ここの回答者って、自分の知識ひけらかすために質問に関係ないことまで垂れ流すんですね

170132人目の素数さん2018/04/07(土) 23:18:11.05ID:7vaLagHl
この質問者って、自分の知識をひけらかすために諸々の未解決問題を質問と称して書きなぐってるんですね

171132人目の素数さん2018/04/07(土) 23:20:00.41ID:oF3ipAq4
分からない問題を書くスレに自作の問題やらを貼る連中が居なくなるまでは減らないんじゃね?

172132人目の素数さん2018/04/07(土) 23:23:27.30ID:cB8sdXEQ
中1レベルの問題で申し訳ないのですが
2分の3x-2分の3xって0ですよね?
問題集の解答だと3xなのですが解き方がわかりません

173132人目の素数さん2018/04/07(土) 23:27:21.85ID:sST1TAxu
>>172
問題の写真をアップロードできますか?

174132人目の素数さん2018/04/07(土) 23:47:06.54ID:2Ltz6QIt
>>156
赤道には赤い線が落ちてるらしい

175132人目の素数さん2018/04/08(日) 02:27:31.29ID:xn7EcOhh
尋常じゃないくらい頭が悪い人が、東京大学理学部数学科を目指すのは無謀にもほどがありますか?

176132人目の素数さん2018/04/08(日) 02:35:02.61ID:0YaDQisf
少なくともヒマラヤさんは無理だと思います

177132人目の素数さん2018/04/08(日) 02:57:10.37ID:FlxctJAr
尋常じゃないぐらい頭が悪いなら病気だろうから医者に見てもらいなさい
診察したら証拠と共にこちらに報告しなさい
そうしたら問いに答えよう

178132人目の素数さん2018/04/08(日) 03:24:54.32ID:lgEhjZHA
0°≦a°≦180°とする。
tana°・tan(a°+10°)・tan(a°+20°)=tan(a°+30°)
となるaをすべて求めよ。

179132人目の素数さん2018/04/08(日) 05:46:24.27ID:lgEhjZHA
pを素数とし、xy平面上の双曲線の一部C:x^2-py^2=1(x>0)を考える。
(1)C上の格子点で、(1,0)以外のものは存在するか。
(2)C上の点で、ある格子点との距離hが0<h<0.001となるものが存在することを示せ。
(3)(2)の格子点の具体例を1つ挙げよ。

180132人目の素数さん2018/04/08(日) 07:38:40.39ID:lgEhjZHA
全ての面が合同な四面体Vがある。
Vの各頂点からその対面に向かい垂線を下ろしたとき、それらのうちで交わるものがあったという。
このとき、Vは正四面体であることを示せ。

181132人目の素数さん2018/04/08(日) 07:39:30.27ID:lgEhjZHA
178〜180はどれも難問です
教えてください

182132人目の素数さん2018/04/08(日) 08:22:26.14ID:MDhv8Bbh
すいません、7.14÷3.4=が解けません。
解き方ってどう解くんでしたっけ?(´・ω・`)

183132人目の素数さん2018/04/08(日) 10:23:32.77ID:c6uX1iE3
1)バイトをする
2)給料が入ったら、文具屋へいく
3)電卓を買う

184132人目の素数さん2018/04/08(日) 11:06:41.61ID:420cCsI5
>>180
まず四面体の各面が三角形である事を示す
四面体が正四面体の線型変換で表せる事を示す
あとは計算

185132人目の素数さん2018/04/08(日) 13:51:16.24ID:eoPqkCLo
>>181
まず難問であることを証明してくれ

1861482018/04/08(日) 13:59:34.48ID:loxRDli9
>>150
>>153
なんとなく分かった気になれた
ありがとう

187132人目の素数さん2018/04/08(日) 14:51:44.47ID:c0qKW2Wr
ヒマラヤってなんで「ヒマラヤ」って名前なの?

188132人目の素数さん2018/04/08(日) 16:43:32.94ID:CfbYfgEs
一番高いところに登りたいといったから物理板の住人が名づけた

189132人目の素数さん2018/04/08(日) 16:46:07.59ID:lgEhjZHA
>>180
この問題は傑作だと思うのですが、なぜ誰も解かないのですか?

190132人目の素数さん2018/04/08(日) 17:32:59.81ID:+sv0nhvP
無理数の逆数は無理数か

191132人目の素数さん2018/04/08(日) 17:44:38.10ID:+sv0nhvP
よく考えたら当たり前だったすまん

192132人目の素数さん2018/04/08(日) 18:25:30.42ID:jVIm1idO
なんで当たり前?

193132人目の素数さん2018/04/08(日) 18:56:49.48ID:lgEhjZHA
座標空間に置かれた球面上には、座標の積xyzを最大にする点が少なくとも1つ存在する。このことを証明せよ。

194132人目の素数さん2018/04/08(日) 18:59:17.19ID:MWhjM696
連結空間の連続像は連結だから

195132人目の素数さん2018/04/08(日) 18:59:30.04ID:MyZT60Z1
2p(p+1)=q(q+1)を満たす正整数p,qについてpの下一桁を全て求めよ
他スレにあったんだけど解き方が全然思いつかん

196132人目の素数さん2018/04/08(日) 20:39:05.41ID:5WCHqrtT
それは残念

197132人目の素数さん2018/04/08(日) 21:05:01.98ID:c6uX1iE3
>>175
わざわざ東京大学理学部に進学しといて敢えて数学科を選ぼうなんて人は、
ある意味尋常じゃないほど頭が悪いから、行けばを似たような仲間がいるよ。
心配ないさ。

198132人目の素数さん2018/04/08(日) 21:08:01.47ID:c6uX1iE3
>>187
カステラ部分が雪を、羊羹部分が永久凍土を、表面の砂糖が結氷を
表すといわれているな。考えたのは、日本の菓子屋だそうだ。

199132人目の素数さん2018/04/08(日) 21:08:27.32ID:c6uX1iE3
それはシベリアだろ。(自演)

200132人目の素数さん2018/04/08(日) 21:12:50.16ID:jVIm1idO
ら乱す君乙

201132人目の素数さん2018/04/08(日) 22:03:14.16ID:E+oPohDI
シベリア、たまに食べたくなるな

202132人目の素数さん2018/04/08(日) 22:54:32.14ID:lgEhjZHA
半径1の円Cに内接する正三角形と、Cに内接する鋭角三角形があり、その共通部分の面積は1/8であるという。
この鋭角三角形の面積として考えられる値の範囲を求めよ。

203132人目の素数さん2018/04/09(月) 03:13:35.36ID:L1NPxjtl
>>197
それはどういう意味ですか?

204132人目の素数さん2018/04/09(月) 03:40:41.31ID:rrGPvGzg
(1)yを正の実数とするとき、0≦yx^2+yx≦1となる実数xの範囲を求めよ。
(2)zを正の実数とするとき、
0≦xz^2+2z≦1となる実数xの範囲を求めよ。
(3)xyz空間において
0≦yx^2+yx≦1 かつ 0≦xz^2+2z≦1 かつ 0≦y かつ 0≦z
を満たす部分の体積を求めよ。

205132人目の素数さん2018/04/09(月) 03:48:01.30ID:rrGPvGzg
全ての面が合同な三角形からなる四面体ABCDがあり、その各面は3辺の長さが4,5,6の三角形である。
ABを1:2に内分する点をP、ACの中点をQ、CDの中点をRとするとき、この四面体を3点P,Q,Rを通る平面で切った切り口の図形の面積を求めよ。
ただしAB=6、AC=4とする。

206132人目の素数さん2018/04/09(月) 03:53:03.61ID:rrGPvGzg
正四面体の各頂点を動く点Pがあり、Pは時刻0では点Aにある。
Pは時刻n(n=0,1,2,...)において確率pで隣接する点に移動するか、確率1-pで時刻n-1にいた点に留まる。
時刻k(k=0,1,2...)において、点Pがはじめて全ての点に到達する確率を求めよ。

207132人目の素数さん2018/04/09(月) 03:55:58.85ID:rrGPvGzg
今日も傑作問題を3題置いておきました。

208132人目の素数さん2018/04/09(月) 03:56:23.75ID:41A776La
実験

209132人目の素数さん2018/04/09(月) 07:25:12.90ID:ztt+6yTC
出題スレじゃないんだけど

210132人目の素数さん2018/04/09(月) 09:12:54.03ID:RIK+fLy/
不定積分ができません。教えてください。
∫1/√{(1-2ux+u^2)(1-2vx+v^2)}dx

211132人目の素数さん2018/04/09(月) 09:41:33.07ID:ZqTvYvGQ
神様ならリーマン予想などの超難問も一瞬で解けるというか、
既に全てのあらゆることの答えを知っているのでしょうか?

212132人目の素数さん2018/04/09(月) 09:45:40.68ID:VNoZxdFK
循環論的証明不可能命題は神様でも答を知らない

213132人目の素数さん2018/04/09(月) 09:47:38.21ID:ZqTvYvGQ
全知全能の神様なら、当然、循環論的証明不可能命題の答えも知っているのではないでしょうか?

214132人目の素数さん2018/04/09(月) 10:15:00.61ID:VNoZxdFK
じゃあ答を知ってるってことで

215132人目の素数さん2018/04/09(月) 10:20:10.97ID:ZqTvYvGQ
無になってもう二度と有になりたくないのですが、自殺をしても無駄ですか?

216132人目の素数さん2018/04/09(月) 10:41:03.15ID:3tMaWciQ
無駄なんだろうね
その調子で今日も自分の答を見つけて

217132人目の素数さん2018/04/09(月) 11:21:56.41ID:ES7qz+Sv
>>215
アルプスの方がよかったか、ヒマラヤ

335 名前:ご冗談でしょう?名無しさん [sage]: 2012/01/12(木) 12:04:04.36 ID:???
日本の山でお願いします。
もの凄く雪深い山でお願いします。

218132人目の素数さん2018/04/09(月) 11:24:19.11ID:SXXCA9fH
>>217
無になってもう二度と有になりたくないです。
死んでも物質的には無にはなれないらしいですが、精神的には無になれるのでしょうか?

219132人目の素数さん2018/04/09(月) 12:04:56.39ID:9H0BjqJb
解釈の原因は解釈者自身の固定観念。解釈の自由には責任が伴う
言葉風紀世相の乱れはそう感じる人の心の乱れの自己投影。人は鏡
憤怒は一時の狂気、無知無能の自己証明。中途半端な知識主ほど激昂
「真実は一つ」は錯誤。執着する者ほど矛盾を体験(争い煩悩)
他人に不自由(制約)を与えれば己も不自由(不快)を得る
問題解決力の乏しい者ほど自己防衛の為に礼儀作法マナーを要求
情報分析力の低い者ほどデマ宗教フェイク疑似科学に感化洗脳
自己肯定感の欠けた者ほど「己の知見こそ全で真」に自己陶酔
人生経験の少ない者ほど嫌いキモイ怖いウザイ憎い想定外を体験
キリスト教は世界最大のカルト。聖書は史上最も売れているト本
全ては必然。偶然 奇跡 理不尽 不条理は思考停止 視野狭窄の産物
人生存在現象に元々意味価値理由目的義務使命はない
宗教民族領土貧困は争いの「原因」ではなく「口実動機言訳」
虐め差別犯罪テロ紛争は根絶可能。必要なのは適切十分な高度教育
体罰は指導力問題解決力の乏しい教育素人の独善甘え怠慢責任転嫁
死刑は民度の低い排他的集団リンチ殺人。「死ねば償える」は偽善
核武装論は人間不信と劣等感に苛まれた臆病な外交素人の精神安定剤
投票率低下は社会成熟の徴候。奇人変人の当選は議員数過多の証左

感情自己責任論 〜学校では教えない合理主義哲学〜 m9`・ω・)

220132人目の素数さん2018/04/09(月) 12:45:11.02ID:9elG49/M
>>194
コンパクトの間違い

221132人目の素数さん2018/04/09(月) 13:51:53.40ID:id02Qzoj
>>218
豆腐の角に頭をぶつけて見ろ

222◆2VB8wsVUoo 2018/04/09(月) 15:36:28.49ID:io+q775y

223◆2VB8wsVUoo 2018/04/09(月) 15:36:46.89ID:io+q775y

224◆2VB8wsVUoo 2018/04/09(月) 15:37:06.34ID:io+q775y

225◆2VB8wsVUoo 2018/04/09(月) 15:37:25.19ID:io+q775y

226◆2VB8wsVUoo 2018/04/09(月) 15:37:42.57ID:io+q775y

227◆2VB8wsVUoo 2018/04/09(月) 15:38:00.29ID:io+q775y

228◆2VB8wsVUoo 2018/04/09(月) 15:38:17.89ID:io+q775y

229◆2VB8wsVUoo 2018/04/09(月) 15:38:36.10ID:io+q775y

230◆2VB8wsVUoo 2018/04/09(月) 15:38:54.70ID:io+q775y

231◆2VB8wsVUoo 2018/04/09(月) 15:39:12.70ID:io+q775y

232132人目の素数さん2018/04/09(月) 16:32:35.35ID:uTkBj0+5
このスレって荒らしの巣窟なのか?

233132人目の素数さん2018/04/09(月) 17:40:12.65ID:h8lsDQzS
頭の悪い私に天才方ご指導お願いします。

この問題が分かりません。
途中までできるのですがどうしても最後の詰めができません。
よろしくお願いします。

問題

tan(Sec^-1 x) を微分せよ

詳しく途中計算もお願いします。

234132人目の素数さん2018/04/09(月) 19:42:24.95ID:9elG49/M
x=secθ=1/cosθ
tanθ=sinθ/cosθ=√(1−cos^2θ)/cosθ=x√(1−1/x^2)=√(x^2−1)

235132人目の素数さん2018/04/09(月) 20:14:22.81ID:h8lsDQzS
>>233
答えは

X/√(X^2-1) らしい

公式

d/dx*sec^-1±1/(x*√(x^2-1))

準公式

d/dx*Sec^-1 x=1/(x*√(x^2-1))

途中までできたんだけど・・・

y=tan(Sec^-1 x) とおく

u=Sec^-1 x とおき

du/dx=1/(x*√(x^2-1))
dy/du=(tan u)'=1/cos^2 u=sec^2 u

dy/dx=dy/du*du/dx=sec^2(Sec^-1 x)/(x*√(x^2-1))
ここからできません。

236132人目の素数さん2018/04/09(月) 20:23:38.78ID:ctRQq2rS
>>235
いや…sec^2(sec^-1 x)=(sec(sec^-1 x))^2=x^2じゃないの?

237132人目の素数さん2018/04/09(月) 20:26:03.71ID:0YjB9kCb
θ = Sec^{-1} (x) より x = secθ = 1/cosθ

238132人目の素数さん2018/04/09(月) 20:27:47.33ID:h8lsDQzS
>>235
間違い
>d/dx*sec^-1±1/(x*√(x^2-1))

d/dx*sec^-1=±1/(x*√(x^2-1))

239132人目の素数さん2018/04/09(月) 20:33:26.95ID:0YjB9kCb
θ = Sec^{-1} (x) とおくと y = tan(Sec^{-1} (x)) = tanθ

y’= 1/(cosθ)^2 ・dθ/dx = x^2 ・ 1/(x √(x^2 + 1)) = x/√(x^2 + 1)

240132人目の素数さん2018/04/09(月) 20:38:49.10ID:h8lsDQzS
>>239
なるほど・・・

ありがとうございます。(^^)

241132人目の素数さん2018/04/09(月) 23:55:28.09ID:5CjsGTs1
二項係数についての和として

 C(n,r) × C(n+1,r) の r=0 から n までの和

は計算するにはどうすればいいですか。

242132人目の素数さん2018/04/10(火) 00:01:27.92ID:tsBvEI7e
>>220

243132人目の素数さん2018/04/10(火) 00:06:53.23ID:h0ncoV7h
↑これが数学板の実力です
専門板なのに異常にレベルが低い
せいぜい数学の少しできる高校生レベル

244132人目の素数さん2018/04/10(火) 00:12:44.22ID:GBepGGDq
C(2n+1, n) だな。

(1 + x)^n = 納k=0, n] C(n, k) x^(n-k)
(1 + x)^(n+1) = 納l=0, n+1] C(n+1, l) x^l

だから、辺々かけて

(1 + x)^(2n+1)
= 納k=0, n] 納l=0, n+1] C(n, k) C(n+1, l) x^(n-k+l)

この右辺から x^n の項、
即ち k = l をみたす項を抜き出すと、
その係数が 納k=0, n] C(n, k) C(n+1, k) だから、
左辺の x^n の係数から C(n+1, k)

245132人目の素数さん2018/04/10(火) 00:13:24.45ID:GBepGGDq
>>243
オマエモナー(懐かしい)

246132人目の素数さん2018/04/10(火) 00:16:35.56ID:Grri/SLG
>>244
なんでそんなスゴイ解答が即答でできるんですか!
もしかして天才様ですか。

247132人目の素数さん2018/04/10(火) 00:20:29.81ID:jP3vQIqM
>>245
オマエガナー

248132人目の素数さん2018/04/10(火) 00:28:40.09ID:A00MFEg2
f(x)=1(xが有理数のとき)、1(xが無理数のとき)
という関数は連続と言えますか?

249132人目の素数さん2018/04/10(火) 00:33:21.30ID:h0ncoV7h
いえます

250132人目の素数さん2018/04/10(火) 00:33:34.39ID:jP3vQIqM
オバカダナー

251132人目の素数さん2018/04/10(火) 01:17:00.75ID:A00MFEg2
>>249
定義域は接続できるのですか?

252132人目の素数さん2018/04/10(火) 02:20:06.86ID:4b0CIbZG
宇宙飛行士と閻魔大王はどっちの方が凄いのでしょうか?

253132人目の素数さん2018/04/10(火) 07:41:07.25ID:h0ncoV7h
>>251
定義域は実数全部ですね
f(x)=1と同じです

254名無し2018/04/10(火) 13:48:33.86ID:5ogz0Um4
1名の店員のレジ、1時間あたり40人の客が訪れるのに対し処理できる人数は1時間にμ人である

1.1時間あたりλ人の客が注文に訪れ、店員は1時間あたりμ人の処理が可能であるという状況では、注文中を含め商品注文のためにn人の客が待っている確率は以下である
Pn=(1-λ/μ)(λ/μ)^n (n>=0)
このとき上記の式が確率になるためのμの条件を示せ

2.小問1で得た条件の下、以下の関係を満たすことを示せ
Σ0→∞ Pn=1

3.上記の不等式を満たす最小のμの中で5の倍数となる値を求めよ

4.店を訪れた客が注文を開始するまでの平均時間Wqは
Wq=(λ/μ)/{λ(1-λ/μ)}
で与えられることが知られている、小問2で求めたμの下、平均時間はどれくらいになるか、単位を分にして回答せよ

255132人目の素数さん2018/04/10(火) 15:51:24.98ID:r8Bv7xYo
MM/1

256132人目の素数さん2018/04/11(水) 01:56:31.28ID:GHKaqCGG
半径1の円Cに内接する正三角形△ABCがある。
以下の条件をすべて満たす鋭角三角形全体からなる集合をSとする。

(1)半径1の円Cに内接している。
(2)円C上の3点A,B,Cを、△ABCが正三角形をなすように動かすとき、△ABCとの共通部分の面積が1/8となることがある。

Sの要素である鋭角三角形のうち、2番目に大きくない辺の長さをLとするとき、Lのとりうる値の範囲を求めよ。

257132人目の素数さん2018/04/11(水) 02:49:33.32ID:ixEOJ+I8
>241

Σ[r=0,n] C(n,r)×C(n+1,n+1-r)

2n+1個の物を n個と(n+1)個に分けてから合計(n+1)個選ぶやり方


2n+1個の物から そのまま(n+1)個を選べば
C(2n+1,n+1) = C(2n+1,n)

258132人目の素数さん2018/04/11(水) 03:30:05.94ID:GHKaqCGG
>>257
nCk・pCq=(n,k,p,q)と表すとき、
(a,b,c,d)=(a,e,c,f)
となるe,fは何通りあるか。

259132人目の素数さん2018/04/11(水) 03:43:42.59ID:W9Hs3QHO
9-4=5 で5の倍数ですよね?

そうすると
9≡4 (mod 5)
だと思うんですが、

9を5で割った余りは4ですけど
4を5で割ると商が0.8、余り0

になるんで、合同式の定義に反すると思うのですが、
何がおかしいんでしょう?

260132人目の素数さん2018/04/11(水) 05:20:58.57ID:ixEOJ+I8
>>178

a = 50 + 90n,
a = 55 + 90n, 
(n:整数)

>>210

{1/√(uv)}log|√{(1-2ux+uu)/u} + √{(1-2vx+vv)/v}| … uv>0
-(1/u)√(1-2ux+uu)    … u≠0,v=0
-(1/v)√(1-2vx+vv)    … u=0,v≠0
x   … u=v=0

261132人目の素数さん2018/04/11(水) 06:36:33.76ID:GHKaqCGG
等式 αx^2+3αx+α-1=0...(A) を考える。

(A)を、αを複素数の定数として、xの方程式と見た場合の解を重複も込めてβ、γとする。

また(A)を、xを複素数の定数として、αの方程式と見た場合の解をδとする。

βまたはγと、δが一致するときの、αが満たすべき条件を述べよ。
その際αを複素数の定数として扱い解答せよ。

262132人目の素数さん2018/04/11(水) 15:08:21.55ID:ixEOJ+I8
>>261

β+γ = -3,
βγ = (α-1)/α,
δ = 1/(xx+3x+1),

263132人目の素数さん2018/04/11(水) 16:34:31.33ID:3PQRg3Nk
ベルンハルト・リーマンと油井亀美也はどっちの方が頭が良いですか?

264132人目の素数さん2018/04/11(水) 16:34:58.57ID:l1g6ZOY4
数学をする体力がありません。体力をつけるにはどうしたらいいのでしょうか?

265132人目の素数さん2018/04/11(水) 18:35:04.51ID:1lu0RHNC
どこかの論文に
乾燥した餅を噛むといいって書いてあったよ

266132人目の素数さん2018/04/11(水) 19:34:39.43ID:CeatG4a4
円周上に等間隔に7個点を打つ方法有りませんか?
角度を正確に出すとかでは駄目です。
円の大きさは等間隔に打てるので有ればどんな大きさにしても良い事にします。
よろしくお願いします。

267132人目の素数さん2018/04/11(水) 19:43:23.64ID:GHKaqCGG
>>266
教えてほしい?

268132人目の素数さん2018/04/11(水) 19:52:11.35ID:iVKWfDYH
>>266
折り紙使えばいい

269132人目の素数さん2018/04/11(水) 19:56:09.53ID:snA62Sld
>>268
それって角から12.54mm折るみたいなのですか?

270132人目の素数さん2018/04/11(水) 20:00:59.30ID:GHKaqCGG
>>269
教えてほしい?

271132人目の素数さん2018/04/11(水) 20:15:31.98ID:t2Ry4v0S
>>265
その心は?

272132人目の素数さん2018/04/11(水) 20:27:50.19ID:Du3tm00l
AとBが、正値演算子でかつTr(A)=Tr(B)=1  (量子力学でいうところの密度演算子)
をみたす行列で、ある行列Xがあって、YをXエルミート共役とするとき、
A = XBY
という関係にあるとき、rank(A)≦rank(B) が成り立つ

といったような主張が証明無しに本に書いてあったのですが、これはどうやって示すのでしょうか?
(書き方があいまいだったので条件がちょっと足りないかもしれません。すみません。)

273132人目の素数さん2018/04/11(水) 21:45:38.20ID:5SW+MjNE
外からギャーギャーうるさいが言いたいことがあるんだったらはっきり言え
女々しんだよ。自分が誰か分からないようにしないと調子に乗れないのかカギは。

卑怯なガキは黙れ。

274132人目の素数さん2018/04/11(水) 22:09:18.19ID:nu9etAr0
正七角形なら普通に作図できるだろ

275132人目の素数さん2018/04/11(水) 22:15:40.28ID:iVKWfDYH
>>274
いわゆるコンパスと定規だけでは作図できない、と言わてれるね

276132人目の素数さん2018/04/11(水) 22:21:19.48ID:VwhU8qik
黄金比は作図できるからできるよ

277132人目の素数さん2018/04/11(水) 22:26:07.85ID:iVKWfDYH
それは正五角形の話じゃない?

278132人目の素数さん2018/04/11(水) 22:28:13.87ID:CeatG4a4
>>275
作図出来ないものの証明方法ってなんかある?

279132人目の素数さん2018/04/11(水) 22:30:37.82ID:isce9Uby
自殺したいです
オススメの自殺方法を教えてください

280132人目の素数さん2018/04/11(水) 22:33:45.65ID:6osMetRY
乾燥した餅を噛むといいらしいよ

281132人目の素数さん2018/04/11(水) 22:36:46.71ID:CeatG4a4
僕は作図できる方法を探してるんだけど、
例えば奇数だから単位円を縦と横に並べて(0.0)(A.7A)の原点をつないでいくと平行線が見つかるとか無いかな?
作図する円が中心に来るかは疑問だけど...

282132人目の素数さん2018/04/11(水) 22:44:31.53ID:DYGbZxuk
>>281
それ正方形じゃない?
ピタゴラスでアプローチしたほうが良いと思われる。25:24:7をうまく使えれば出来なくはないと思われる

283132人目の素数さん2018/04/11(水) 22:55:51.94ID:CeatG4a4
>>282
例えばだよ例えば。
ピタゴラスって事は25の円を描いていくのかい?

284132人目の素数さん2018/04/11(水) 22:57:29.94ID:iVKWfDYH
>>278
ざっくりとした説明になるけど、(コンパスと定規の)作図可能数は単位長(これを1とする)に加減乗除と開平(平方根)の操作を有限回施してできる数に限られるもので、
正七角形の場合、z^7=1となる冪根zを求める問題で、この方程式を代数的に解こうとすると、どうしても途中で3次方程式を解く必要があって、3乗根の操作が必要になるので作図可能数の条件を満たすことができない
って感じ

で、コンパスと定規では不可能と言われている正七角形の作図も、折り紙を使うと可能とされている
具体的な方法は覚えていないのでネットで調べる等してほしいと思うけど、折り紙を使った幾何では3次方程式の解を作図可能になるため、そのようなことができるのだとか。

285132人目の素数さん2018/04/11(水) 23:07:13.98ID:CeatG4a4
>>284
なんか分かりそうな分からないようなだな
今ピタゴラスのアプローチがあるみたいだけどそれ使ってもだめかな

286132人目の素数さん2018/04/11(水) 23:40:59.23ID:iVKWfDYH
>>285
ごめん。25:24:7を使って何をしようとしてるのかは正直わかんない。
近似でよければtan(2π/7)≒1.25なので、傾き5/4の直線を書くとそれっぽい角度が作れるんじゃないかな。
もちろんそれっぽい以外の何物でもないけど…

287132人目の素数さん2018/04/12(木) 00:00:21.14ID:Lq0mCj0i
>>282
どうやるんだい?
こちら2人お手上げだ。詳細希望

288132人目の素数さん2018/04/12(木) 00:30:39.37ID:j5k+jEMr
複素平面上の単位円C上を動く点Pの表す複素数zに対し、あるzの有理式w=f(z)を考えると、w=x+yiはy=x^2を満たすという。このようなfに対し、以下の問に答えよ。

(1)f(z)の例を1つ挙げよ。

(2)あるfを選ぶ。その逆関数をg、z=g(w)とおく。また、w=x+yiがy=x^2をみたすとする(-∞<x<+∞)。
このとき、fのとり方によらず、点P(z)はC上の全域を動くか。

289132人目の素数さん2018/04/12(木) 00:39:52.81ID:uFcrnZGB

290132人目の素数さん2018/04/12(木) 00:57:31.35ID:Lq0mCj0i
>>289
あぁ、サンクス
AとBが合うように谷折りにするのがミソなんだろうなってことはわかた

291132人目の素数さん2018/04/12(木) 01:09:58.34ID:nSiYAy56
数学が超苦手なんだけど、数学に興味があるという人が東京大学理学部数学科を目指すというのはやっぱりやめておいた方が良いのでしょうか?

292132人目の素数さん2018/04/12(木) 01:11:53.33ID:h4uD4lqK
ヒマラヤさんは無理ですよ

293132人目の素数さん2018/04/12(木) 01:21:13.82ID:5wOhNqRM
50代で理一入って数学専攻でドクターまで行って何になる?

294132人目の素数さん2018/04/12(木) 01:22:58.75ID:nSiYAy56
いや、俺50代じゃないんだが・・・・・・。

295132人目の素数さん2018/04/12(木) 01:22:59.35ID:nSiYAy56
いや、俺50代じゃないんだが・・・・・・。

296132人目の素数さん2018/04/12(木) 01:24:06.26ID:nSiYAy56
やべっ、2連投してしまった。

297132人目の素数さん2018/04/12(木) 01:26:32.89ID:JfaIy66F
RotmanのAn Introduction to Homological Algebraという本の第1章1節で、ホモロジーの起源は、微分形式の積分のpathの独立性を考えるところにあると言うようなことが書かれているのですが、これはポアンカレ以前の話でしょうか?

298132人目の素数さん2018/04/12(木) 01:29:30.18ID:h4uD4lqK
>>295
じゃ何歳なんですか?

299132人目の素数さん2018/04/12(木) 01:43:04.96ID:ctC56jyN
数学完全に忘れてます。
「方程式」「展開」「分解」でざっとぐぐってみたけど分からないのでお暇な人計算過程(解き方)ご教授下さい!!
答えが x=0.1 の前提で、式が「111.9 = 1000x + 1100x^2 + 900x^3」のとき ※ ^ はべき乗のつもり
ここからどう展開?分解?させて x=0.1 を出していくのかが分からないのです。

300132人目の素数さん2018/04/12(木) 02:02:10.76ID:pc3OsLRR
それは方程式ですね
x=0.1を入れると確かにイコールが成り立つことがわかりますから、これが答えです
求め方は勘です

301132人目の素数さん2018/04/12(木) 02:13:11.96ID:3IjiSEW9
「忘れてる」がどこまで思い出せるレベルかにもよるが…

移項して10倍すると
9000x^3+11000x^2+10000x-1119=0
となり、因数分解すると
(10x-1)(900x^2+1190x+1119)=0
ここで900x^2+1190x+1119=0は実数解を持たないので
解が実数という条件があるならば
10x-1=0 ∴ x=0.1

まあ、これでは少々乱暴なので、少し見通しをよくするためにt=10xとでもおくと
9t^3+110t^2+1000t-1119=0
となり、左辺にt=1を代入したら0になるのはすぐ気がつくので
(t-1)(9t^2+119t+1119)=0
と因数分解するのはさほど難しくない。

302132人目の素数さん2018/04/12(木) 02:21:53.23ID:3IjiSEW9
数学を忘れてる人が、なぜその「答えの分かっている3次方程式」を
もう一度数学的に解き直す必要が生じたのかに興味がある。

303132人目の素数さん2018/04/12(木) 02:47:57.61ID:ctC56jyN
>>300 勘じゃない方法があれば知りたいです。でも中学の数学の勉強で x^2 を因数分解?するときに勘みたいな形で、
    正解であろう数字を総当たりで当て込んで正解を導き出した苦い思い出を思い出しました・・・。

>>301 ご教授ありがたいです!!しかし (10x-1)(900x^2+1190x+1119)=0 で頭?な状態ですが、とりあえず因数分解でぐぐってみます。
    課題で社債 利息法 利子率の計算テキストを解いているのですが、299で書いた式からいきなり正解が 0.1 と出ていて、
    なんで(どうやって) 0.1 出てるんだろうと思いまして。高校数学で既に理解が怪しい状態でした。

304132人目の素数さん2018/04/12(木) 03:24:27.42ID:5wOhNqRM
四面体Vの各辺の中点をP,Q,R,S,T,Uとする。
この6点のうち1点Xを固定する。残り5点のうちから1点Yを、線分長XYが最小となるように選ぶ。ただし点Yの候補が複数ある場合は、そのうちのどれを選んでもよいものとする。
このようにXとしてP,Q,R,S,T,Uを選び、上記のような操作を行ったところ、いずれの場合もXYの値が等しくなった。
このとき、Vは正四面体であることを証明せよ。

305132人目の素数さん2018/04/12(木) 04:36:12.49ID:nSiYAy56
高校数学は大学数学を勉強する時には何の役にも立たないのでしょうか?

306132人目の素数さん2018/04/12(木) 04:36:18.03ID:5wOhNqRM
二項係数2nCk=(2n,k)=akについて以下の問いに答えよ。

(1)akの桁数をbkとする。k=0,1,...,n-1に対し、不等式 bk<b(k+1) が成り立つようなnの範囲を求めよ。

(2)nは(1)の条件を満たすとする。k=1,2,...,nに対し、akを十進法で表したとき、その最上位の桁の数をckとする。ckをc(k-1),c(k-2),...,c0のうち必要なものを用いて表わせ。

307132人目の素数さん2018/04/12(木) 04:46:35.88ID:5wOhNqRM
自然数nに対し、積分Inを
∫[0→∞] x(sinx)^n dx = In
とおく。
このとき、極限
lim[n→∞] n^a・ln
が0でない定数に収束するような有理数aの値を求めよ。

308132人目の素数さん2018/04/12(木) 10:50:05.89ID:TgaFEakF
>>307

∫[0,2Nπ] x{sin(x)}^n dx
= Σ[k=0,N-1] ∫[2kπ,2(k+1)π] x{sin(x)}^n dx
= Σ[k=0,N-1] ∫[0,2π] (2kπ+θ) (sinθ)^n dθ
= Σ[k=0,N-1] (k a_n + b_n)
= N(N-1)/2 a_n + N b_n,

ここに、
a_n = 2π∫[0,2π] (sinθ)^n dθ,
b_n = ∫[0,2π] θ (sinθ)^n dθ,

n:偶数のとき a_n >0,b_n >0,
n:奇数のとき a_n =0,b_n <0,
だから、N→∞ とすると発散する。
∴I_n は存在しない。

309132人目の素数さん2018/04/12(木) 11:23:31.66ID:TgaFEakF
>>308

a_n = 0 (n:奇数)
  = (2π)^2 (n-1)!! / n!! (n:偶数)

森口・宇田川・一松「数学公式I」岩波全書221 (1956) p.245

310132人目の素数さん2018/04/12(木) 12:07:21.95ID:TgaFEakF
>>165

「zで微分できる」
つまり複素微分ができるとは、
どの向きから z→a に近づいても
{f(z)-f(a)}/(z-a) が同じ値に近づく、
ということ。
偏角に注目すれば、arg{f(z)-f(a)} - arg(z-a) → c,
つまり点aにおいてfが角度を保つこと。(等角写像)

不定積分をもつ〔∲ f(z)dz = 0〕ならば正則。(Moreraの定理)

また、実部と虚部がそれぞれ Cauchy-Riemannの式を満たすことでもある。

野放図な拡張の例(Cauchy-Riemannを満たさない)
 z = x + i y として,
 f~(x,y) = f(x) + y{g(x,y) + i・h(x,y)}

311132人目の素数さん2018/04/12(木) 12:18:50.25ID:TPWr+zEy
>>310
ペアノ算術を含む任意の無矛盾な公理系に対し、あるモデルM,Nおよび論理式φが存在して、M|=φかつN|≠φとできることを示せ、という問題がわかりません

312132人目の素数さん2018/04/12(木) 12:51:25.73ID:BnG9+7zn
>>311
乾燥したパイナップルを食べると
ペアノ算術を含む任意の無矛盾な公理系に対し、あるモデルM,Nおよび論理式φが存在することになるという論文があるらしいよ。
これに加えて乾燥した餅を噛むとM|=φかつN|≠φが同時に示すことができる

313132人目の素数さん2018/04/12(木) 13:03:36.30ID:TPWr+zEy
>>311まだですか?

知識自慢はできるのに>>311はわからないんでしょうか

314132人目の素数さん2018/04/12(木) 13:08:23.50ID:BnG9+7zn

315132人目の素数さん2018/04/12(木) 13:09:47.35ID:7X6yq0eh
答を無視するバカなど相手にされん

316132人目の素数さん2018/04/12(木) 14:22:36.56ID:Xop79KTX
大きさだけが既知なベクトルAと大きさと偏角が既知なベクトルBの差であるベクトルXの大きさは計算できますか?

317132人目の素数さん2018/04/12(木) 14:53:05.86ID:A/rmQD4H
超天才数学者と宇宙飛行士はどっちの方が凄いの?

318132人目の素数さん2018/04/12(木) 14:55:47.65ID:/pikUye7
神の方がすごいですね

319132人目の素数さん2018/04/12(木) 15:01:53.49ID:A/rmQD4H
神より「全ては無価値。最強や究極や至高なんてない。」という思想の方が凄いですよね?

320132人目の素数さん2018/04/12(木) 15:04:35.76ID:/pikUye7
神の方がすごいですね

321132人目の素数さん2018/04/12(木) 15:18:32.30ID:A/rmQD4H
神より「全ては無価値。最強や究極や至高なんてない。」という思想の方が凄いですよね?

322132人目の素数さん2018/04/12(木) 16:38:41.83ID:6p8I1p8t
こんなに面白いゲームに出会えたなんて意味が分かりません。
https://goo.gl/oMRRPf

323132人目の素数さん2018/04/12(木) 16:56:40.19ID:BnG9+7zn
開かなくても分かる
放置伝説だろ?
もうやってるんだ

324132人目の素数さん2018/04/12(木) 17:08:03.63ID:5wOhNqRM
>>304
これ傑作なんですけど誰か解かないんですか

325132人目の素数さん2018/04/12(木) 18:30:39.56ID:5wOhNqRM
f(0)=777である整式f(x)で、以下の条件を満たすものは存在するか
『f(7^n)を十進法表記したときの全ての桁の数字が7になるよう正整数nが無数に存在する』

326132人目の素数さん2018/04/12(木) 18:44:01.08ID:MBNVCYYd
定数関数

327132人目の素数さん2018/04/12(木) 20:04:08.64ID:yPFNbZOa
>>324
お前が解けばいいだろう

328132人目の素数さん2018/04/12(木) 20:04:33.19ID:I+e5vDgt
整式?

329132人目の素数さん2018/04/12(木) 20:41:02.03ID:XBLEENz2
n^3-1が平方数にならないことを証明せよ

330132人目の素数さん2018/04/12(木) 20:45:31.85ID:5wOhNqRM
>>327
私には難しくて分かりません。
ご指導ご鞭撻のほどよろしくお願いいたします

331132人目の素数さん2018/04/12(木) 21:07:51.74ID:cTARkRrI
1^3-1=0^2

332132人目の素数さん2018/04/12(木) 21:09:30.48ID:3IjiSEW9
>>324 >>304
偽の命題は証明できないだろ。

反例:底面が1辺1の正三角形,3つの側面がいずれも底辺1斜辺2の二等辺三角形である三角錐

で、なにがやりたいの?

333132人目の素数さん2018/04/12(木) 23:35:21.73ID:5wOhNqRM
>>332
ありがとうございます。
あなたのおかげで私はさらに一段高みへと登ることができました

334132人目の素数さん2018/04/12(木) 23:41:35.18ID:cTARkRrI
じゃあ2度と書き込まないでね

335132人目の素数さん2018/04/12(木) 23:43:41.37
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

336132人目の素数さん2018/04/12(木) 23:57:43.29ID:h4uD4lqK
今日も「解いた側」の圧勝かぁ・・・。
毎日毎日、ラクラク解ける問題ばかりだから常勝なんだよね・・・。
たまには、解けない解けないっと悩んで負けてみたい、それが今の切実な悩み。

337132人目の素数さん2018/04/13(金) 01:37:19.46ID:wrwxb2om
数列{an}はどのk項の相加平均を取っても1であるという。

(1){an}が有限数列のとき、任意のi,jに対してai=ajと言えるか。

(2)無限数列の場合はどうか。

338132人目の素数さん2018/04/13(金) 06:34:43.26ID:wrwxb2om
2つの袋AとBがあり、また青玉と赤玉が十分な個数用意されている。これらに対し、以下のような操作を行う。いずれが行われる確率も等しく1/4である。

・袋Aに青玉を入れる
・袋Bに青玉を入れる
・袋Aに赤玉を入れる
・袋Bに赤玉を入れる

この操作を繰り返し、袋の中の青玉の個数と赤玉の個数が同じになったとき、袋の中の玉を全て外に出し空にする。ただし袋が空の場合は、青玉と赤玉の個数を同じとはみなさない。

この操作をn回行ったときに袋A,Bとも空である確率pnを求めよ。ただしn≧1とする。

339132人目の素数さん2018/04/13(金) 06:40:31.35ID:wrwxb2om
有理数pは循環節の長さが3、有理数qは循環節の長さが4である。

p+qの循環節の長さとしてあり得る整数の値を全て求めよ。p+qが整数となる場合は循環節の長さを0とする。

340132人目の素数さん2018/04/13(金) 06:58:04.60ID:a3amsBu1
youtubeに載ってた問題です
http://fast-uploader.com/file/7079124254533/

上のurlの図の補足として辺MDと辺AEは平行な線です。
よって△ABE∽△MBDなのですが、なぜこの条件だけで
相似比が"2:1"と求まるのでしょうか?
ご教授お願いいたします
 

341132人目の素数さん2018/04/13(金) 09:11:22.41ID:hQwMIj6X
「全ては無価値。最強や究極や至高なんてない。」という思想に勝るものは無いですか?
という質問をしようと思ったが、
そうすると、その思想に価値があるということになる上に、
最強や究極や至高もあるということになってしまうのか・・・・。
難しいな・・・・。

342132人目の素数さん2018/04/13(金) 09:23:53.71ID:N8DXVNrx
神が至高で最強です
悩むことはありませんね

343132人目の素数さん2018/04/13(金) 09:26:01.84ID:kbMgWsJo
>>330
俺にも難しいので指導できません。今後のご活躍を期待しております。

344132人目の素数さん2018/04/13(金) 10:24:57.15ID:hQwMIj6X
神より「無になってもう二度と有にならない」の方が凄いですよね?

345132人目の素数さん2018/04/13(金) 10:32:46.74ID:hQwMIj6X
絶対無限の大きさの観測者がいたとしたら、その観測者に見える世界は、
2m足らずの大きさの観測者とは何もかもが違いますよね?

346132人目の素数さん2018/04/13(金) 10:35:36.20ID:N8DXVNrx
神と我々の見方は違うでしょうね

347132人目の素数さん2018/04/13(金) 10:39:20.76ID:hQwMIj6X
神の大きさはどのくらいなのでしょうか?

348132人目の素数さん2018/04/13(金) 10:41:31.00ID:N8DXVNrx
人間に知ることはできませんね

349132人目の素数さん2018/04/13(金) 10:43:03.33ID:hQwMIj6X
神より「無になってもう二度と有にならない」の方が凄いですよね?

350132人目の素数さん2018/04/13(金) 12:03:57.12ID:o3HaLTdi
>>349
物理の質問スレを連投で数回流したことあるんだってすごいな

351132人目の素数さん2018/04/13(金) 12:35:09.43ID:l4zwT3J/
無になってもう二度と有になりたくない。

352132人目の素数さん2018/04/13(金) 12:48:26.15ID:wrwxb2om
>>340
お前が条件見落としてる
ちゃんと図だけじゃなく動画見て説明を聞け
クズだろお前?
時間の浪費をさせるな
眼球破裂しろ

353132人目の素数さん2018/04/13(金) 12:49:00.27ID:AjRSb95f
無のくせに

354132人目の素数さん2018/04/13(金) 13:04:28.76ID:l4zwT3J/
無になってもう二度と有になりたくない。

355132人目の素数さん2018/04/13(金) 13:42:22.75ID:n2GOpEhN
「全」完全永久消滅攻撃をしたらどうなりますか?

356132人目の素数さん2018/04/13(金) 13:55:04.77ID:hgbG3PIw
ここは精神病棟かよ?

357132人目の素数さん2018/04/13(金) 14:08:07.86ID:D7njkgIx
精神病棟に失礼だろ

358132人目の素数さん2018/04/13(金) 14:19:09.23ID:nXdTGZ6s
無、無限大、至高、東大、どっちがをNGにすればヒマラヤをNGにできる

359132人目の素数さん2018/04/13(金) 14:24:02.57ID:4vJYovCW
有、神もね

360132人目の素数さん2018/04/13(金) 14:26:24.68ID:olNtMm85
xは2桁の自然数で、xを4,6,13で割ったときの余りを順にa、b、cとする。bはaの二倍でcはbの二倍になるという。このとき、xを5で割ったときの余りはいくらか?
答えは1,2,3,4,0のうち1つ
宿題す。答えはわかりまへん。解説もたのむ

361132人目の素数さん2018/04/13(金) 14:29:23.71ID:MA0VOLfb
バカなら虱潰しすればいい

3623402018/04/13(金) 14:42:06.68ID:a3amsBu1
>>352
動画は5分50秒からの2問目です
ダウンロード&関連動画>>


よろしくお願いします

363132人目の素数さん2018/04/13(金) 15:03:07.08ID:ZhDYiCLK
>>360
LCM(4,6,13) = 156
題意より、(a,b,c) = (a,2a,4a)  0≦a<3

・a = 0 のとき
 x ≡ 0 (mod 156)

・a = 1 のとき
 xが奇数のときは b≠2
 xが偶数のときは a≠1
 ∴ 解なし

・a = 2 のとき
 x ≡ 34 (mod 156)

xを5で割ると…

364132人目の素数さん2018/04/13(金) 16:22:00.41ID:b1ecwugc
>>362
>Mは辺ABの真ん中の点です
・・・あのさぁ...

365132人目の素数さん2018/04/13(金) 16:47:42.57ID:p9cqkdQk
a=b=c=0を満たす2桁の自然数はない
0<b=2a<6より(a,b,c)=(1,2,4),(2,4,8)だが
4k+1=6l+2は両辺の偶奇が異なり(1,2,4)は不適
10≦4k+2=6l+4=13m+8≦99
mは偶数で2nとおくと26n+8
34,60,86のうち34のみ適

366132人目の素数さん2018/04/13(金) 16:49:23.58ID:ZhDYiCLK
>>337

数列{a_n}の連続するk項の相加平均は1であるという。

このとき、任意のi,jに対して a_i = a_j と言えるか?

>>339

p = m/999,q = n/9999 とおける。(m,nは整数)

1/999 = 1/(10^3 - 1) = (10^6 + 1)(10^3 + 1)/(10^12 - 1) = 1111*900991/(10^12 -1)
1/9999 = 1/(10^4 - 1) = (10^8 + 10^4 + 1)/(10^12 - 1) = 111*900991/(10^12 -1)

367132人目の素数さん2018/04/13(金) 17:08:18.16ID:ZhDYiCLK
>>337

数列{a_n}の連続するk項の相加平均は1であるという。

このとき、任意のnに対して a_{n+k} = a_n と言えるか?

368132人目の素数さん2018/04/13(金) 17:17:04.89ID:wrwxb2om
2^(√2)が無理数であることは証明されていますか?

369132人目の素数さん2018/04/13(金) 17:17:59.00ID:wrwxb2om
正四面体を一つの平面で切るとき、その断面積を最大にする切り方を説明せよ。

370132人目の素数さん2018/04/13(金) 17:25:51.54ID:wrwxb2om
p,qは互いに素な自然数とし、数列{a[n]}を
a[1]=1,a[2]=1
a[n+2]=p(a[n+1])+q(a[n])
で定める。
このときどのように素数pを選んでも、a[1],a[2],a[3]...の中に、必ずpで割り切れる項が存在することを証明せよ。

371132人目の素数さん2018/04/13(金) 17:26:48.83ID:wrwxb2om
>>370
訂正:
素数p→素数P
pで割り切れる→Pで割り切れる

372132人目の素数さん2018/04/13(金) 17:27:43.74ID:wrwxb2om
>>370
これは今日の思索の結晶傑作ですが、証明が完成されておりません。
爺にお知恵をお貸しくださいませ

373132人目の素数さん2018/04/13(金) 17:34:04.57ID:RelSCI+M
年寄りの冷や水

374132人目の素数さん2018/04/13(金) 18:18:03.86ID:d30MIixq
>>372
あの残念な完走スレの主のじいさんかな?

3753622018/04/13(金) 18:31:54.25ID:a3amsBu1
>>364
中点連結定理ってのをすっかり忘れてました!!
ありがとうございました

376132人目の素数さん2018/04/13(金) 19:17:44.90ID:7XmjYjej
p(a[n+1]),q(a[n])がどういう演算を意味しているのかまったくわからない

377132人目の素数さん2018/04/13(金) 20:21:11.66ID:+CMouLcj
ないものねだりって最悪ですよね

378132人目の素数さん2018/04/13(金) 21:15:14.91ID:7XmjYjej
初めに断わっておきますが、私は別のスレで話題になっている人物ではありません。


以下の計算・推論のどこが誤っているか教えていただけませんか。

長い歴史の中で同じことをやった人はいるはずで、どこかが間違っているのですが…

単なる計算ミスであれば、申し訳ありません。

http://fast-uploader.com/file/7079177251543/

379132人目の素数さん2018/04/13(金) 21:19:04.55ID:7XmjYjej
すいません、自己解決しました。

馬鹿だなぁ…

380132人目の素数さん2018/04/13(金) 22:07:28.86ID:hV8soC5k
四面体Vについて、その各辺の中点全てを通る球Bが存在するという。
さらにどのような条件が加われば、Vは正四面体となるか。
以下から必要かつ十分な条件の組み合わせを選べ。
そのような組み合わせが複数ある場合は、それら全てを答えよ。

(1)Vの外接球の中心がBの中心と一致する。
(2)Vの内接球の中心がBの中心と一致する。
(3)Vの重心GがBの中心と一致する。
(4)5辺の長さがそれぞれ等しい。
(5)4辺の長さがそれぞれ等しい。
(6)3辺の長さがそれぞれ等しい。

381132人目の素数さん2018/04/13(金) 22:35:29.21ID:AjRSb95f
>>369
平面に交叉する正四面体の面と交叉線を固定し、その条件での最大面積を考えれば良い

382132人目の素数さん2018/04/14(土) 00:54:04.59ID:6AiEptRD
f(x)=(x+1)exp(x)、g(x)=(x^2+1)exp(-x^2)に対し、積分
∫[0→∞] g(x)/f(x) dx
を求めよ。

383132人目の素数さん2018/04/14(土) 02:13:03.91ID:Rl6BZiHz
>>370

a[1] = a[2] = 1 と
a[n+2] ≡ q・a[n]  (mod P)
より
a[2k+1] ≡ a[2k+2] ≡ q^k (mod P)

P,q が互いに素なら q^k ≠ 0 (mod P)

ゆえ、Pで割り切れる項はない。

384132人目の素数さん2018/04/14(土) 05:35:19.53ID:Oecucg2u
最近多様体の勉強を始めたものです
微分形式の全体はコホモロジー論などでよく見ますが、ベクトル場の全体は関数環上の加群になるにも関わらず使われているのを見たことがありません
ベクトル場の全体はどのようなところに使われるのでしょうか

385132人目の素数さん2018/04/14(土) 07:12:49.42ID:86CazwCk
>>151
関数論が分かれば理解できるの?

386132人目の素数さん2018/04/14(土) 07:15:15.89ID:9PpfRB7X
>>385
まず勉強して見ろよ

387132人目の素数さん2018/04/14(土) 09:13:13.14ID:6HTS2kkE
>>386
説明できないのか?ん?

388132人目の素数さん2018/04/14(土) 09:19:08.62ID:9PpfRB7X
いやならするな

389132人目の素数さん2018/04/14(土) 09:24:36.43ID:9PpfRB7X
わからなのか?ん?

390132人目の素数さん2018/04/14(土) 09:31:26.03ID:9PpfRB7X
口の効き方知らないのか?ん?

391132人目の素数さん2018/04/14(土) 10:44:48.43ID:6HTS2kkE
>>382
誰かこの積分を解いてください。
5次元量子場における排中方程式の一般解となり得ます

392132人目の素数さん2018/04/14(土) 11:06:57.58ID:9PpfRB7X
わからなのか?ん?

393132人目の素数さん2018/04/14(土) 12:18:08.08ID:d21dALRO
さすがに簡単過ぎでは

394132人目の素数さん2018/04/14(土) 13:58:50.61ID:rSerZgiw
神と全はどっちの方が凄いですか?

395132人目の素数さん2018/04/14(土) 13:59:02.01ID:eCCSTVza
神です

396132人目の素数さん2018/04/14(土) 14:05:49.35ID:rSerZgiw
神は全に含まれるから全の方が凄くね?

397132人目の素数さん2018/04/14(土) 14:09:31.44ID:eCCSTVza
神は世界の創造主ですから神の方がすごいです

398132人目の素数さん2018/04/14(土) 14:16:28.79ID:jKou5ekJ
無の方がすごいです

399132人目の素数さん2018/04/14(土) 14:27:31.69ID:rSerZgiw
神は世界の創造主と言っても、その神も全に含まれるわけだから、全の方が凄くね?

400132人目の素数さん2018/04/14(土) 14:32:03.56ID:rSerZgiw
400

401132人目の素数さん2018/04/14(土) 14:33:36.22ID:eCCSTVza
401

402132人目の素数さん2018/04/14(土) 14:34:40.27ID:rSerZgiw
402

403132人目の素数さん2018/04/14(土) 16:11:50.24ID:rSerZgiw
大日如来を解析するとどうなりますか?

404132人目の素数さん2018/04/14(土) 16:20:22.02ID:aMCtuncx
思考力を重視する新共通一次試験の問題です

実数a,b,cに対するxの方程式ax^2+bx+c=0の解について、私達は学習した。

(1)この式の左辺を変形することで、この方程式の解を導きなさい。解答欄(ア)に、過程も示して書きなさい。

(2)以下の空欄を埋めなさい。
(a,b,c)=(2,6,1)のとき、この方程式の解を解答欄(イ)に結果のみ書きなさい。

以下、(a,b,c)をそれぞれ一桁の正整数とする。

(3)この方程式が実数解を持たない(a,b,c)が何組あるかを解答欄(ウ)に、過程も示して書きなさい。

(4)この方程式が整数解を持ち、かつ方程式cx^2+bx+a=0も整数解を持つような(a,b,c)の組を全て求め、解答欄(エ)に過程も示して書きなさい。

405132人目の素数さん2018/04/14(土) 16:23:03.62ID:YU1H/4Kq
頑張ってるね

406132人目の素数さん2018/04/14(土) 18:35:38.41ID:4zx9CHIM
>>385
詭弁

407132人目の素数さん2018/04/14(土) 19:17:23.32ID:JncRC1UN
どこが詭弁なんだろう?

408132人目の素数さん2018/04/14(土) 19:18:45.91ID:JncRC1UN
詭弁かどうかも分からないんだろ

409132人目の素数さん2018/04/14(土) 19:31:24.09ID:CE0YeZw9
自殺をしたら地獄に落ちるのかな?

410132人目の素数さん2018/04/14(土) 20:40:56.19ID:G3QRdShX
1〜99の整数を33個ずつ3つの組に分ける。
どのような組分けをしても、それぞれの組から1つずつ計3個の数を取り出して
そのうち2つの数の和が残る1つと等しくなるようにできることを示せ。


こんなこと言えるのですか

411132人目の素数さん2018/04/14(土) 21:28:33.69ID:EzkicfoM
不動点定理?

412132人目の素数さん2018/04/14(土) 23:38:26.55ID:gezefeMc
神を解析するとどうなりますか?

413132人目の素数さん2018/04/14(土) 23:42:32.38ID:Rl6BZiHz
>>404

(1)
 a≠0 のとき、両辺に 4a を掛けて (2ax+b)^2 - (bb-4ac) = 0,
 bb -4ac ≧0 のとき、2ax+b = √(bb-4ac),x = {-b±√(bb-4ac)}/(2a),
 bb -4ac <0 のとき、実数解なし。
 a=0,b≠0 のとき、x = -c/b,
 a=b=0,c≠0 のとき、解なし。
 a=b=c=0 のとき、すべてのx

(2)
 (-3±√7)/2,

(3)
 bb-4ac <0
 b=1, 9×9 = 81
 b=2, 81- 1 = 80  (1,2,1)
 b=3, 81- 3 = 78  (1,3,1) (1,3,2) (2,3,1)
 b=4, 81- 8 = 73
 b=5, 81-14 = 67
 b=6, 81-23 = 58
 b=7, 81-29 = 52
 b=8, 81-36 = 45
 b=9, 81-42 = 39
 計 573個。

414132人目の素数さん2018/04/14(土) 23:43:44.02ID:eCCSTVza
>>412
神を解析することはできません

415132人目の素数さん2018/04/15(日) 00:15:19.10ID:ZO3/JPf/
>>403

大日如来(梵:Mahāvairocana)は、真言密教の教主である仏であり、密教の本尊。
一切の諸仏菩薩の本地。

日本の神仏習合の解釈では、天照大神(大日孁貴)と同一視もされる。

416132人目の素数さん2018/04/15(日) 00:18:37.77ID:YqjOVsJe
神に高エネルギー粒子をぶつけます

417132人目の素数さん2018/04/15(日) 00:22:50.96ID:HTtPKdh0
1.どの面の面積も等しい
2.どの2つの面も合同でない
この2つの性質を併せ持つ四面体OABCが存在することを証明したいと思っています。
方針として考えているのは中間値の定理を使う方法です。長い説明ですが
「△CAB=△OABとなるように4点OABCを固定する。
△CABを底面に固定して、△OABをABを軸として底面から回転させる。したがって四面体OABCの体積は0から大きくなっていくが、その途中で△OBC=△CABとなることを示す。
さらに、その条件のもとで△OBC=△OABとなるようにOABCを取れることも示す」
しかし最後の「その条件のもとで△OBC=△OABとなるようにOABCを取れる」が示せません。
中間値の定理を使う方法では駄目でしょうか。ご教授ください。

418132人目の素数さん2018/04/15(日) 00:48:14.11ID:vjFc/mws
ある空間Xの普遍被覆空間をXの基本群で割った空間がXと同相になることの証明を教えて下さい

419132人目の素数さん2018/04/15(日) 08:40:30.52ID:2ofgUy7q
>>414
なぜですか?

420132人目の素数さん2018/04/15(日) 09:14:37.27ID:2ofgUy7q
神や仏は数学を超越しているのでしょうか?

421132人目の素数さん2018/04/15(日) 09:35:16.23ID:MpAIY4Lo
学校の宿題で出ましたお願いします・・・(1)の答が(n−k)/(n−1)であること以外
全然分かんないですううう。(TOT)

異なるn個の地点(n≧2)を移動するある生物がいる。この生物は毎秒一回,前いた地点とは
異なる(n−1)個の地点のどれかに等しい確率で移動する。(1)この生物がk個(1≦k≦n−1)
の地点を訪問し終えたとき,次の一秒でまだ訪れていない地点に移動する確率を求めよ。
(2)この生物がk個の地点を訪問し終えたとき,まだ訪れていない地点に移動するまでの秒
数の期待値を求めよ。(3)この生物がすべての地点を訪問し終える秒数の期待値を求めよ。
ただし,最初にどこかにいた一秒間も秒数に数えるとする。

422132人目の素数さん2018/04/15(日) 10:58:01.92ID:ZO3/JPf/
>>421

(1) p_k = (n-k)/(n-1)

(2)
j秒後に初めて未訪地点に移動する確率は q_j = (1-p_k)^(j-1)・p_k
 既訪地点数がkである時間を t_k とすると、
 E[t_k] = Σ[j=1,∞] j q_j = 1/p_k = (n-1)/(n-k).

(3)
 E[t] = Σ[k=1,n-1] E[t_k] = Σ[k=1,n-1] (n-1)/(n-k),
かな?

423132人目の素数さん2018/04/15(日) 11:06:25.62ID:GR72o02a
>>421
1) 訪問済みk未訪問n-k
等確率であるから(n-k)/(n-1)
2) m秒後までずっと訪問済み((k-1)/(n-1))^m
m秒後に初めて未訪問((k-1)/(n-1))^(m-1)(n-k)/(n-1)=(n-k)(k-1)^(m-1)/(n-1)^m
Σm(n-k)(k-1)^(m-1)/(n-1)^m=(n-k)d/d(k-1)(Σ(k-1)^m/(n-1)^m)=(n-k)d/d(k-1)(1/(1-(k-1)/(n-1)))=(n-k)d/d(k-1)((n-1)/((n-1)-(k-1)))=(n-k)(n-1)/((n-1)-(k-1))^2=(n-k)(n-1)/(n-k)^2=(n-1)/(n-k)
3) Σ(n-1)/(n-k)=(n-1)(1+1/2+…+1/(n-1))

424132人目の素数さん2018/04/15(日) 11:08:52.61ID:GR72o02a
>>422
>Σ[j=1,∞] j q_j = 1/p_k
なーる

425132人目の素数さん2018/04/15(日) 11:19:33.55ID:LGgAg+xm
S={(x.y)€R^2|x^2+y^2=1}
のときs^2はどのような立体?になりますか?
R=実数です

426132人目の素数さん2018/04/15(日) 11:20:26.50ID:7K9gb3X+
ユーロ

427132人目の素数さん2018/04/15(日) 11:30:21.94ID:xE2oqLza
やはり「無」に勝るものはないのでしょうか?

428132人目の素数さん2018/04/15(日) 12:49:57.35ID:ZO3/JPf/
>>425
 2つの単位円周Sの直積集合 S×S(に適当な構造を入れて)トーラス、円環面、輪環面、ドーナツ、烏賊リング などと云うらしい。

429132人目の素数さん2018/04/15(日) 12:57:21.41ID:QpsvmtUe
∈のかわりに€とは不便な事やってんな

430132人目の素数さん2018/04/15(日) 13:02:59.60ID:8yYCZ54k
「すうがく」を漢字変換することで数学記号がどんどん出てくることを教えてもらってないのかな?

431132人目の素数さん2018/04/15(日) 13:25:47.92ID:xE2oqLza
無になってもう二度と有になりたくない。
これを絶対に実現したい。

432132人目の素数さん2018/04/15(日) 13:54:54.16ID:xE2oqLza
北斗神拳伝承者とP≠NP予想を証明した人はどっちの方が凄いのでしょうか?

433132人目の素数さん2018/04/15(日) 14:32:18.88ID:8a3tBTEh
世代に1人は伝承でき、伝承するレベルに達する人が大勢いることもある北斗神拳より
出来る人がいなければ何世代も待たなければなさないP≠NP予想の証明のほうが難しい

434132人目の素数さん2018/04/15(日) 15:20:06.38ID:xE2oqLza
そういうことじゃなくて、北斗神拳という技を使えること自体と、
P≠NP予想という超難問を解ける頭脳はどっちの方が凄いかということです。

435132人目の素数さん2018/04/15(日) 16:22:18.18ID:g1OfbBlC
>>433
諏訪湖に否定されて赤っ恥

436132人目の素数さん2018/04/15(日) 16:39:05.41ID:XRJ8LAXh
£

437132人目の素数さん2018/04/15(日) 17:52:16.15ID:HTtPKdh0
簡潔に書きます
以下の2条件を共に満たす四面体が存在するか、またその構成方法、をご教授いただけないでしょうか。
1.どの面の面積も等しい
2.どの2つの面も合同でない

438132人目の素数さん2018/04/15(日) 18:27:56.04ID:pWyzwvhu
>>437
・適当な三角形を用意します
・三角形の各辺について、辺の両端とは異なる頂点を通り、辺と平行な線を引き、これを辺を中心軸として動かした回転体である円筒を作ります
・各辺で作った3つの円筒が1点で交われば、その点を第4の頂点とすることで、すべての面の面積が等しい四面体を構成できます
・その4面体の各面が非合同であるという条件を満たすために、元の三角形がどのような条件を満たさなければならないか(あるいはそのような条件がないといえるか)を調べます

439132人目の素数さん2018/04/15(日) 20:05:09.36ID:xXd+AKre
fを区間(a,b)で定義された関数として下の2つの条件が同値であることを示して下さい
lim[x→b-0]f(x)=α
(a,b)内の任意の点列{x_n}がbに収束するならば、数列{f(x_n)}はαに収束する

440132人目の素数さん2018/04/15(日) 22:00:49.17ID:4e1jCJ6m
正七角形をコンパスと定規を使って作図出来ない事がやっと理解出来ました。

それで、正七角形を整数の目盛りだけで作図することは可能でしょうか?
大きさは大きくなっても構いません。
出来たらその座標の出し方を教えて頂けますか?

441132人目の素数さん2018/04/15(日) 22:32:54.81ID:yuvRuzkq
2以上の自然数nにおいて、
p^n=nq+1
を満たす素数の組(p,q)は存在しないことを示せ。

442132人目の素数さん2018/04/15(日) 22:45:10.79ID:jTT9UoEK
>>440
整数の目盛りで作図できるならコンパスと定規で作図できるんでないか?

443132人目の素数さん2018/04/15(日) 23:10:11.17ID:GLFac1d4
この問題について解き方を教えていただけませんか?
見当もつかず悩んでいます
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

444132人目の素数さん2018/04/16(月) 00:35:43.11ID:lB/3FCQW
>>443
自己解決しました ご迷惑おかけしました

445132人目の素数さん2018/04/16(月) 01:42:38.41ID:ytYsbgdL
この問題の計算があまりに面倒なのですが、場合分けと計算量を少しでも減らす方法はありませんか?

a,bを自然数とし、3次関数
f(x)=x^3+(a-b)x^2+bx
を考える。
(1)f(x)の増減を調べよ。ただし凹凸は調べなくて良い。
(2)正の実数cに対して、以下の定積分を求めよ。
∫[0→c] f(x) dx

446132人目の素数さん2018/04/16(月) 01:45:20.69ID:xE+pTLcM
人間やめるがベストかな。

447132人目の素数さん2018/04/16(月) 02:21:37.88ID:l32JfmgV
>>442
ちゃんと整数で区切られた目盛りの座標を知りたいのさ
出来ないならその証明も知りたい。
前回と被るかな?今回は座標が取れるから若干現実的になったと思うけど

448132人目の素数さん2018/04/16(月) 02:44:49.97ID:PygIix2V
結果だけいえば、目盛だけじゃ出来ない。

449132人目の素数さん2018/04/16(月) 03:04:24.39ID:+uaAA+04
微妙にスレチかもしれないけど
1. 得点率66%は得点率60%程度か
2. 150点満点中99点は150点満点中90点程度か

450132人目の素数さん2018/04/16(月) 07:31:00.32ID:gWA0EBkS
>>447
> 正七角形をコンパスと定規を使って作図出来ない
> 正七角形を整数の目盛りだけで作図する
これらが矛盾することであるということが理解できないってこと?

451132人目の素数さん2018/04/16(月) 07:33:43.29ID:T0U1DGOO
そもそも作図は可能なんでないか?

452132人目の素数さん2018/04/16(月) 08:04:49.62ID:WsNCzCtb
>>445
計算量多いか?

453132人目の素数さん2018/04/16(月) 08:13:14.17ID:s2dtv9jy
被覆空間の定義で被覆写像に連続性を仮定しないこともあるのですか?

454132人目の素数さん2018/04/16(月) 09:51:28.97ID:DSpJu4v2
被服科

455132人目の素数さん2018/04/16(月) 09:56:40.92ID:++yAGMPE
予想Aが別の予想Bを仮定すると正しいと証明されて定理Aになるとき、
もしも予想Bが間違っているとわかったら予想Aも間違っている可能性は高いのでしょうか?

456132人目の素数さん2018/04/16(月) 10:07:26.45ID:DZmX7M0X
そうですね

457132人目の素数さん2018/04/16(月) 10:09:54.75ID:l32JfmgV
>>450
整数で出来るかどうかだからさ1兆桁が使えるコンパスと定規なら問題無いんじゃん?でも現実無理だから計算式で解くしか無いじゃん?

458132人目の素数さん2018/04/16(月) 11:42:59.70ID:qQJjslCG
神や仏や高級霊は、数学を超越しているのでしょうか?

459132人目の素数さん2018/04/16(月) 12:34:22.69ID:1A38i3Dk
バカ自慢も大概にね

460132人目の素数さん2018/04/16(月) 12:38:56.69ID:Cr9cwYX2
毎日、神だのホザイているキチガイは、コテを付けるかしてもらいたい。

461132人目の素数さん2018/04/16(月) 12:43:25.31ID:7TGVBZ4T
>>447
有効桁数15桁でよければ
(623489801858734,781831482468030)
(-222520933956314,974927912181824)
(-900968867902419,433883739117558)
(-900968867902419,-433883739117558)
(-222520933956315,-974927912181824)
(623489801858733,-781831482468030)
(1000000000000000,0)
近似でしかないことに注意ね

462132人目の素数さん2018/04/16(月) 12:51:48.89ID:92QgQauW
>>455
「 予想B ⇒ 予想A 」が真であることが証明できていて、
なおかつ予想Bが間違っていることも証明できた場合、依然として

「 予想B ⇒ 予想A 」

は真のままである。なぜなら、これは仮定が偽の命題となり、無条件で真だからだ。
当然ながら、予想Aの真偽については何も言えない。予想Aが間違っている可能性は
高いとも低いとも言えない。

463132人目の素数さん2018/04/16(月) 13:20:36.11ID:umJZNK0O
「不可知論」をWikipediaで調べてみると、
ものごとの本質は人には認識することが不可能である、とする立場のこと。
と書かれているのですが、「ものごとの本質は人には認識することが不可能である」ということが分かっているわけだから、矛盾してるような気がするのですが、
これはただの言葉遊びなのでしょうか?
それとも、本当に矛盾しているのでしょうか?

464132人目の素数さん2018/04/16(月) 13:21:02.50ID:ytYsbgdL
線形代数の難問を教えてください。

465132人目の素数さん2018/04/16(月) 15:17:42.75ID:xE+pTLcM
いやズラ

466132人目の素数さん2018/04/16(月) 16:32:58.97ID:gytj//Wi
また毛の話してる

467132人目の素数さん2018/04/16(月) 16:37:33.95ID:5fZ2uWk+
数学板の住人が考える「最強妄想キャラ」を教えてください。

468132人目の素数さん2018/04/16(月) 17:24:37.73ID:x2XaiW+D
お前をこのスレから消せる奴

469IQの低い人へ2018/04/16(月) 17:32:52.26ID:RdWW5Bcf
阪京 胸触っていい?
ふざけたやつ ダメですよ。
阪京 手しばっていい?
本大日 そういうことホントやめてください。

 あるいは、森友問題にまつわる“真面目な”やりとりの最中でも……。

ふざけたやつ 昭恵さんの名前あったからじゃないですか?
阪京 デリケートな話なんだよ。それは直接関係ないと思うけど……。
大日本 はい。
阪京 おっぱい触っていい?

 こうした発言について、阪京次官を直撃すると、

「何を失礼なことを言っているんだ。ふざけたやつがそんなこと言っているんだよ!」
「ふざけんなよ」


 と全否定。4月12日発売の「週刊新潮」では、阪京次官の振る舞いの詳細を掲載する。

470132人目の素数さん2018/04/16(月) 18:06:42.41ID:XPzR1e00
正三角形以外で、
3つの辺の長さが有理数、
かつ、3つの角が分度器で計測可能な三角形はありますか?
要は、全ての辺の長さと角度が、定規と分度器で測れる三角形があるのか、ということです。
ないのなら、証明できますか。

471132人目の素数さん2018/04/16(月) 18:21:52.06ID:RgShEUBJ
>>470
ありません。cos xが有理数ならQ(exp ix)はQ上2次元以下ですが
[Q(exp 2πi/N):Q]=φ(N)でφ(N)≦2となるのはN=1,2,3,4,6のみなので3辺が有理数の三角形の角で,かつ2π/整数の形の角となりうるのは60°,90°,120°しかありません。

472132人目の素数さん2018/04/16(月) 18:24:49.56ID:l32JfmgV
>>461
おお、サンクス
シムシティで道路作りに困ったらまた質問するわ

473132人目の素数さん2018/04/16(月) 22:02:47.89ID:ytYsbgdL
コピペミスってました、これが正しいです
よろしくお願いします




この問題の計算があまりに面倒なのですが、場合分けと計算量を少しでも減らす方法はありませんか?

a,bを自然数とし、3次関数
f(x)=|x^3+(a-b)x^2+bx|
を考える。
(1)f(x)の増減を調べよ。ただし凹凸は調べなくて良い。
(2)正の実数cに対して、以下の定積分を求めよ。
∫[0→c] f(x) dx

474132人目の素数さん2018/04/16(月) 22:08:42.39ID:1xnsTCif
f(x)って3次関数じゃないじゃん
コピペ元どこ?

475132人目の素数さん2018/04/16(月) 22:12:49.79ID:oS5KdrQE
>>473
絶対値記号がかぶさってるのに3次関数っていうか?
増減を調べるだけなのに凹凸を調べなくてよいとわざわざいうか?
問題集を見てもらえばわかるがふつうはこういう言い方はしない
よって他にも問題を写し間違えているんじゃないかと不安になる
元の問題があるなら画像で上げろ

476132人目の素数さん2018/04/16(月) 22:16:12.18ID:e7Sgewxi
自作厨か。

477132人目の素数さん2018/04/16(月) 23:36:31.65ID:ytYsbgdL
以下の不等式で表される領域を図示し、その面積を求めよ。
y^2≤(1+x){1+(1/x)}≤y^2+1

478132人目の素数さん2018/04/16(月) 23:40:29.69ID:xE+pTLcM
頑張ってね

479132人目の素数さん2018/04/16(月) 23:54:01.74ID:e7Sgewxi
>>477
も少し、出来そうだなと思わせて実は簡単には解けない、そんな問題がいいな、おいらは。

たとえば、こんなの。

3以上の自然数 n が与えられたとき、
自然数 y は、どのような自然数 x、z に対しも、方程式 x^n+y=z^n の解とはなりえない、という。
y はどのような自然数か?  

480132人目の素数さん2018/04/16(月) 23:58:57.76ID:ytYsbgdL
>>479
受験勉強のためにやっておりますので、合理的でない問題は解きませぬ

481132人目の素数さん2018/04/17(火) 00:15:33.73ID:OpQZlM6R
>>477これ面積有限になる?x>0において
sqrt(x+1/x+1) ≦ y ≦ sqrt(x+1/x+2)
だけど
sqrt(x+1/x+2) - sqrt(x+1/x+1)
=1/(sqrt(x+1/x+2) + sqrt(x+1/x+2))
ってx→∞でO(1/(2sqrt(x)))だから発散すんじゃね?

482132人目の素数さん2018/04/17(火) 00:27:59.90ID:KqjZggHi
>>479
ペアノ算術を含む任意の無矛盾な公理系に対し、あるモデルM,Nおよび論理式φが存在して、M|=φかつN|≠φとできることを示せ、という問題がわかりません

483132人目の素数さん2018/04/17(火) 01:42:56.58ID:Ku0ZnrTM
僕も分からない、ゴメンね、ジロー

484132人目の素数さん2018/04/17(火) 01:45:05.10ID:Ku0ZnrTM
>>480
不合理な問も分からない問題の一つなのでしょうね。

485132人目の素数さん2018/04/17(火) 12:58:46.22ID:cOZu//pr
>>463
オマエがやってるのが言葉遊び

486132人目の素数さん2018/04/17(火) 13:00:16.81ID:+pEnOXwO
神だの無だのと、精神を病んでいる書き込みが多いが、ワッチョイでも導入したらどうかね?

487132人目の素数さん2018/04/17(火) 13:04:51.69ID:PQyFkARt
>>466

”無産階級文化大革命”に担ぎ出されてました。

「世界革命人民の中心、赤い太陽の毛主席 万歳!」

488132人目の素数さん2018/04/17(火) 13:22:10.31ID:xapJUGFk
毛主席は立派だよ、今の中国は腐っとる。日本は限りなく腐ってる。

489132人目の素数さん2018/04/17(火) 13:36:03.12ID:6Dzse6R/
600万人殺せば英雄

490132人目の素数さん2018/04/17(火) 15:23:57.27ID:O6UBf+xH
すみませんこのスレでいいのかわかりませんが、
勝率が98%にあがるには最短で

ゲームプレイ回数
勝ち

がいくつになると勝率98%にあがりますか?
教えてください!

491132人目の素数さん2018/04/17(火) 15:26:20.53ID:O6UBf+xH
写真貼れてませんでした。。

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

492132人目の素数さん2018/04/17(火) 15:55:55.98ID:Nzlm0JnU
残りプレイ回数をx、全て勝ったとして
(1933+x)/(1979+x)≧0.98

493132人目の素数さん2018/04/17(火) 16:18:16.67ID:uG1dZPZR
R,R':環
I,J:Rのイデアル、I',J':R'のイデアル
R/I≅R'/I'、R/J≅R'/J' かつIはJを含むただ一つの素イデアル

このときI’はJ'を含むただ一つの素イデアルと言えるそうなのですが
直観ではIとI'、JとJ'が対応しているのでそんな感じしますが、証明がわからずもやもやしています
わかる方いらっしゃいましたらよろしくお願いします

494132人目の素数さん2018/04/17(火) 16:18:52.65ID:uG1dZPZR
R,R':環
I,J:Rのイデアル、I',J':R'のイデアル
R/I≅R'/I'、R/J≅R'/J' かつIはJを含むただ一つの素イデアル

このときI’はJ'を含むただ一つの素イデアルと言えるそうなのですが
直観ではIとI'、JとJ'が対応しているのでそんな感じしますが、証明がわからずもやもやしています
わかる方いらっしゃいましたらよろしくお願いします

495132人目の素数さん2018/04/17(火) 16:19:31.64ID:uG1dZPZR
すいませんなんか二回投稿してました

496132人目の素数さん2018/04/17(火) 16:26:15.13ID:O6UBf+xH
>>492
すみません
結局あと何連勝したらいいのでしょうか?
ほんとすみません

497132人目の素数さん2018/04/17(火) 16:32:19.19ID:lXDybzxa
そんなにあやまらなくていいよ

498132人目の素数さん2018/04/17(火) 16:41:28.92ID:Nzlm0JnU
2300回まで負けないこと
キリがよくてよかったね(よくないか)

499132人目の素数さん2018/04/17(火) 18:33:11.87ID:KvPqyul+
>>496
この不等式解くだけだろ
中卒かお前?
アホか

500132人目の素数さん2018/04/17(火) 20:41:57.13ID:G2QCLYpj
500

501132人目の素数さん2018/04/17(火) 21:32:22.24ID:O6UBf+xH
>>499
すみません高卒ですけどわかりません
本当に教えて下さい
すみません

502132人目の素数さん2018/04/17(火) 21:55:30.99ID:T5dYrfMG
過去レス華麗にスルーは高卒も数学無能も関係ない

503132人目の素数さん2018/04/17(火) 22:01:26.80ID:O6UBf+xH
あ、2300なんすね
ありがとうございます
97%になってから98%に上がるまで無茶苦茶無茶苦茶長いです!!

504132人目の素数さん2018/04/18(水) 04:08:03.23ID:03dLztWI
サイコロを6000回振ったところ、kの目が出る回数をakとすると、
a1=976
a2=1160
a3=769
a4=1089
a5=996
a6=1010
であったという。このサイコロは平等なサイコロであると言えるか。

505132人目の素数さん2018/04/18(水) 07:16:33.46ID:3m/YngKi
>>504
平等の定義による

506132人目の素数さん2018/04/18(水) 13:19:18.56ID:03dLztWI
不等式(a-b)(b-c)>(c-d)(d-a)を解け。

なぜこのやうな美しい不等式が解かれずに残っていたのか。

507132人目の素数さん2018/04/18(水) 13:46:01.87ID:aemp1B+Z
>>506
どの文字について解くのかね? いつもの自作かね?

508132人目の素数さん2018/04/18(水) 15:44:03.71ID:leSguuY4
線形写像L:R^2→R^2がx≠0においてsup(|L(x)|/|x|)<1を満たすとする
このとき、F:R^2→R^2をF(x)=x+L(x)と定めると
det(F)≠0となっていることを示して下さい

509132人目の素数さん2018/04/18(水) 20:51:49.34ID:29fOahNr
何で2次元に限定?
固有値の絶対値が1未満なら
1足して0にはならんだろ。

510132人目の素数さん2018/04/18(水) 21:25:20.93ID:03dLztWI
y=1/xの1≦x≦nの部分の長さLnと、y=1/xの2≦x≦n+1の部分の長さMnとの差について、極限値
lim[n→∞] (Ln-Mn)
を求めよ。

511132人目の素数さん2018/04/18(水) 23:25:14.64ID:JJwCbfx1
>>493
Kを体として
R=R'=K[x]
J=J'=(x^2)
I=(x), I'=(x+1)
で反例かと

R側とR'側をつなぐ情報がなにか欠けているような気がする

512132人目の素数さん2018/04/19(木) 00:04:52.69ID:jDhUrl+i
>>506

0 < (a-b)(b-c) - (c-d)(d-a) = (b-d)(a-b+c-d),

>>510

∫√{1+(1/x^2)} dx = ∫(1/x)√(1+xx) dx
= ∫{cosh(t)^2}/sinh(t) dt  (← x=sinh(t))
= ∫{sinh(t) + 1/sinh(t)} dt
= cosh(t) + log(tanh(t/2))
= √(1+xx) + (1/2) log{[√(1+xx)-1]/[√(1+xx) +1]},

よって
Ln = √(1+nn) +(1/2) log{[√(1+nn)-1]/[√(1+nn)+1]} -√2 - (1/2) log{[√2 -1]/[√2 +1]},
Mn = √{1+(n+1)^2} +(1/2) log{[√(1+(n+1)^2)-1]/[√(1+(n+1)^2)+1]} -√5 - (1/2) log{[√5 -1]/[√5 +1]},

1≦x≦2 の部分の長さは
(√5 - √2) + (1/2) log{[√5 -1]/[√5 +1]} - (1/2) log{[√2 -1]/[√2+1]}
= 1.22201617708663

n≦x≦n+1 の部分は平坦になり、長さは1に近づく。

Ln - Mn → 0.22201617708663  (n→∞)

513132人目の素数さん2018/04/19(木) 01:26:30.44ID:0eMLeCX8
神は数学を超越しているのでしょうか?

514132人目の素数さん2018/04/19(木) 01:31:05.38ID:2MvfsW5O
それが真なら神はリーマン予想に対してなんらかの証明、あるいは反例の痕跡を残している筈。

515132人目の素数さん2018/04/19(木) 01:40:57.87ID:X3rbAxvj
存在しない物は超越もクソもない

516132人目の素数さん2018/04/19(木) 01:56:34.27ID:2Hoane70
神が数学を超越しているからってリーマン予想に対して何らかの証明や反例の痕跡を残しているとは限らないのでは?

517132人目の素数さん2018/04/19(木) 03:01:11.73ID:x96XWS8/
複素平面の問題で単位円周上を動く点Pという設定がよく出てきますが、
複素平面と円は相性が良いのでしょうか

518132人目の素数さん2018/04/19(木) 07:05:05.97ID:iEydF+Vn
複素平面の性質を理解するのに手っ取り早いからじゃない?

519132人目の素数さん2018/04/19(木) 09:26:22.54ID:2MvfsW5O
>>516
それが真ならあなたの神はその程度の神ということになる筈。

520132人目の素数さん2018/04/19(木) 11:40:53.31ID:ZBY1eu/y
>>519
その程度っていうのも人間の尺度で考えた結果でしかない。
神の視点から見れば、何か別の意味があるかもしれない。

521132人目の素数さん2018/04/19(木) 11:43:19.79ID:vfuij6mt

522132人目の素数さん2018/04/19(木) 12:31:58.93ID:jDhUrl+i
>>510

f(x) = 1/x,
f '(x) = -1/xx,

∫[1,2] √{1+(1/x^4)} dx = 1.132090393306
∫[n,n+1] √{1+(1/x^4)} dx → 1  (n→∞)
辺々引く。
Ln - Mn → 0.132090393306  (n→∞)

523132人目の素数さん2018/04/19(木) 14:40:42.32ID:terlTo89
無限次元空間ってどんな感じの空間なんでしょうか?

524132人目の素数さん2018/04/19(木) 14:45:59.38ID:MhvdfMLM
上限supと下限infを
「無限に多くの」、「有限個の例外を除けば」という言葉を用いて説明せよ

これについて教えてください

525132人目の素数さん2018/04/19(木) 15:27:09.40ID:QFs6+88y
問題 nを2以上の整数とするとき,√(n!)が整数となることはあるか?

という問題はどうやって解けばいいか教えてください.

526132人目の素数さん2018/04/19(木) 15:45:25.01ID:vQFM/4/M
>>525
√(n!) = m とおく
n! = m^2
n 以下の最大の素数を p とする
上式の素因数として左辺は p を1つだけもつが
右辺は平方数なので各素数を偶数個ずつもつことに反する

527132人目の素数さん2018/04/19(木) 15:51:12.77ID:PppErubZ
>>526
nが2pまであって、p〜2pまでは全て合成数になるような場合はないのでしょうか?

528132人目の素数さん2018/04/19(木) 15:56:48.80ID:2MvfsW5O
ベルトラン・チェビシェフ

529132人目の素数さん2018/04/19(木) 18:00:35.09ID:DaMP/j5m
マキシム・コンツェビッチは天才の中の天才ですか?

530132人目の素数さん2018/04/19(木) 18:51:55.90ID:3SQvUouN
この問題おかしくないですか?
https://imgur.com/a/aYA2i90

ドラマとコマーシャルの回数が同じかコマーシャル
の回数がドラマより1回少ない場合は式が成り立た
ないし、(自然数解がない)
最後に4分のドラマが入る場合は成り立つけど、
そのような番組というのはふつうありますかね?

531132人目の素数さん2018/04/19(木) 19:17:17.26ID:fue/AVbp
まあ、作問者が自分の作った問題の設定を客観視できてない典型的なパターンだから
気にするな。例えば20分のドラマと3分のCMをドラマから始めて交互に繰り返すが
211分になったら強制終了みたいな状況を想定してるのかもしらんが、その設定を
表現できてないよね。
ビデオテープのあった時代の何の問題だ?

532132人目の素数さん2018/04/19(木) 19:54:05.13ID:3SQvUouN
>>531
ありがとうございます。
都庁の採用試験の過去問です。

533132人目の素数さん2018/04/19(木) 20:02:16.36ID:3SQvUouN
同じ年度の試験問題ですが、これもおかしくないですか?
https://imgur.com/a/5eYQo

答は29人になると思いますが、選択肢にない。

534132人目の素数さん2018/04/19(木) 20:22:31.11ID:ULNXo+sD
奇数にはならない。

535132人目の素数さん2018/04/19(木) 20:32:45.45ID:ULNXo+sD
B+BS = 112-5[]
S = 4[]+4
T+ST = 82-5[]
BT = 3[]
BST = 2[]+2

0<=[]<=16

5365332018/04/19(木) 21:05:59.73ID:3SQvUouN
計算間違いしてました。
28人ですね。でも答は5番の34人らしいです。
本物の試験問題がないから確かなことは言えないのですが。

537132人目の素数さん2018/04/19(木) 21:55:17.14ID:pxfAWjfZ
>>523
R^∞とかR^ωとか

538132人目の素数さん2018/04/19(木) 22:15:05.62ID:HoUI3g27
>>508
こちら分かる人いませんか?

539132人目の素数さん2018/04/19(木) 22:31:53.64ID:PppErubZ
>>508
今、det(F)=0と仮定します
Fは逆行列を持ちませんから、Fx=yという連立方程式を考えた時、yに対応するxは複数存在するということです
この連立方程式の解のうち2つを持ってきて、a,b(a≠b)とします
すると
F(a)=a+L(a)=F(b)=b+L(b)
となります
Lが線形写像であることに注意すると
L(a-b)=b-a
このとき、|L(a-b)|/|b-a|=1ですが、これは仮定に反します

540132人目の素数さん2018/04/19(木) 22:33:01.74ID:KB3eM4eB
>>509 がものすごく親切に書いてるじゃん。

541132人目の素数さん2018/04/19(木) 22:34:39.68ID:PppErubZ
>>509
どういうことですか?
質問者じゃないけど知りたいです

542132人目の素数さん2018/04/19(木) 23:04:14.75ID:HoUI3g27
>>539
ありがとうございます

543132人目の素数さん2018/04/19(木) 23:04:19.49ID:x96XWS8/
nを自然数とする。
極限
lim[n→∞] |n^n-(n-1)^(n+1)|
を求めよ。

544132人目の素数さん2018/04/19(木) 23:41:05.75ID:Twyts3Mj
a,b,c は整数でaは0でないとき、

(1/5)a^2 + (1/3)b^2 + c^2 + (1/2)ab + bc + (2/3)ca

の最小値はどのように求めればいいでしょうか。

545132人目の素数さん2018/04/20(金) 00:58:24.50ID:msDRzdq1
>>543
与式=n^n(1-(1-1/n)^n(n-1))→∞・(1-∞/e・∞)=-∞

546132人目の素数さん2018/04/20(金) 01:46:48.89ID:rH2mFZcc
>>545
残念、くだらない問題だったか

547132人目の素数さん2018/04/20(金) 01:56:13.77ID:4UDqtrFK
お前のな
くだらない自作問
貼るスレじゃねーんだぞ
ここは

548132人目の素数さん2018/04/20(金) 01:56:43.04ID:d4aaDxAM
>>533
34人で合ってる。
114+84-(x+3y)+2x+y=200より、x=2y+2
x+3y≦84に代入して整理すると5y≦82 ∴ y≦16
y=16のときx=34

549132人目の素数さん2018/04/20(金) 02:07:03.50ID:rH2mFZcc
>>547
解いてみろ
美しさに震えろ

nは十分大きいとする。
どのような凸n角形でも、なす角θがθ<90°-εとなるような2本の対角線を取れることを示せ。εは十分小さい実数とする。

550132人目の素数さん2018/04/20(金) 02:20:03.52ID:KyZLL0NY
>>530
問題に書かれていることをよく分析して最適な答えを選ぶプロセスは、今までテストで何度もやっているはずだが
不得意なら公務員試験自体が向いていない

551132人目の素数さん2018/04/20(金) 03:30:44.30ID:DibTuHdn
>>549

n角形の内角の和は (n-2)π だから、最も小さい内角 ≦ (n-2)π/n.
この頂点から出る (n-3) 本の対角線は、2辺の内側にある。
なす角θが最小のものは、(n-2)π/{n(n-4)} 以下。

対角線の総数は n(n-3)/2 本
これが 0〜πに分布するから、なす角θが最小のものは 2π/{n(n-3)} 以下。
但し、実際には交わらない場合、平行線になる場合も許すとする。

552132人目の素数さん2018/04/20(金) 05:43:44.34ID:d4aaDxAM
十分大きいとか十分小さいとか、何かを真似して問題を作ったつもりだろうが


問題として成立してねーよ。


∀とか∃とか使って示すべき命題をきちんと記述してみやがれ。
それで意味不明さに気づかないならもうやめろ。

553132人目の素数さん2018/04/20(金) 06:00:01.65ID:X4wq04ZP
>>544
平方完成して当たりをつけてそれ以下になる点を求める。

554132人目の素数さん2018/04/20(金) 08:26:19.41ID:IJIdFRBl
>>552
大変失礼いたしました、ご教授ください
傑作を作り皆様の知能向上に役立てます

555132人目の素数さん2018/04/20(金) 08:34:45.76ID:CsrKNpAp
>>530
録画される放映物や答えとして考えるべきなのがコマーシャルが
最初に入らない放映中のドラマの録画時間であることは問題文の空気で読み取れる。
仮に、答えが設定されているであろう5の108分後とする。
問題文に次の8つの仮定
1:(ドラマとコマ−シャルを合わせた全体の放映時間だろうが)放映時間は211分である、
2:20分間のドラマの放映毎に3分間コマーシャル(以下、CMと略記)が流れる、
3:標準モード(普通の方法)で120分録画出来るビデオテープをすべて使う、
4:CMは録画しない、
5:最初に普通の方法(標準モード)でビデオテープをすべて使う、
6:5のようにビデオテープをすべて使い、録画の途中から、3倍速モードの機能に切り替える、
7:ドラマの終了と同時にビデオテープも終了するように録画する
(普通のビデオにはドラマ終了と同時にビデオの録音も終了する機能はあるだろうし、ここの意味が分からんがw)、
8:ドラマが放映される前にCMは流れない、
は確かにすべて明記されている。
仮定3、5から、録画時の最初の操作は、ドラマを120分間録画してビデオテープを使い切ることになる。
仮定2、8から、録画の開始から20分後に最初のCMが3分間流れ、
仮定1、3、5、6、7を満たすようにビデオテープを使い切るまでには合計4回3分間のCMが流れる。
よって、仮定4から、はじめに録画したビデオテープを使い切った後には、録画されていない空白の12分間が生じることになる。
故に、録画開始から120分立つ前にビデオテープを使い切ることはあり得ないことになる。
これは、普通の方法で120分間録画してビデオテ−プを使い切ったことに反し矛盾する。
だから、答えの候補の5の108分後ではないことになる。
設定されている答えの候補であろう5の108分後が否定され、録画の最初の操作が、
ドラマを120分間録画してビデオテープを使い切ることである以上、答えの候補として挙げられている
108分より前の時間の、1の92分後、2の96分後、3の100分後、4の104分後 も自動的に否定される。

556132人目の素数さん2018/04/20(金) 08:47:11.77ID:CsrKNpAp
>>530
>>555の仮定7の「ビデオの録音」でなく、「ビデオの録画」
(録画時には同時に録音もされるから、大して変わらんが)。

557132人目の素数さん2018/04/20(金) 08:50:48.53ID:8Ow+jZOO
>>554
スレチだから出題なら別のスレでやってくれ

558132人目の素数さん2018/04/20(金) 09:33:21.77ID:CsrKNpAp
>>530
計算が狂ったし、書き直し。
録画される放映物や答えとして考えるべきなのがコマーシャルが
最初に入らない放映中のドラマの録画時間であることは問題文の空気で読み取れる。
空気で読むと、本来の答えの候補には105分後が入っていないといけないと思われる。
仮に、答えになるかも知れない「4の104分後」か「5の108分後」とする。問題文に次の8つの仮定
1:(ドラマとコマ−シャルを合わせた全体の放映時間だろうが)放映時間は211分である、
2:20分間のドラマの放映毎に3分間コマーシャル(以下、CMと略記)が流れる、
3:標準モード(普通の方法)で120分録画出来るビデオテープをすべて使う、
4:CMは録画しない、
5:最初に普通の方法(標準モード)でビデオテープをすべて使う、
6:5のようにビデオテープをすべて使い、録画の途中から、3倍速モードの機能に切り替える、
7:ドラマの終了と同時にビデオテープも終了するように録画する
(普通のビデオにはドラマ終了と同時にビデオの録画も終了する機能はあるだろうし、ここの意味が分からんがw)、
8:ドラマが放映される前にCMは流れない、
は確かにすべて明記されている。
仮定3、5から、録画時の最初の操作は、ドラマを120分間録画してビデオテープを使い切ることになる。
仮定2、8から、録画の開始から20分後に最初のCMが3分間流れ、
仮定1、3、5、6、7をすべて満たすようにビデオテープを使い切るまでには合計5回3分間のCMが流れる(23×5=115<120)。
よって、仮定4から、はじめに録画したビデオテープを使い切った後には、録画されていない空白の15分間が生じることになる。
ここに、ビデオテープに録画されるドラマの放映時間は録画開始から105分後になる。

559132人目の素数さん2018/04/20(金) 09:42:21.94ID:WM6OxkTC
微分積分学という本で
「a>1のとき、a^(1/n)→1 (n→+∞)を示せ」
という問題の解説中で
a^(1/1) > a^(1/2) > a^(1/3) > ...
が自明として扱われていたのですが、
これは何故成り立つのですか?

証明の大筋は
nに関して単調減少 かつ 下に有界 ⇒ 1に収束
というものです

560132人目の素数さん2018/04/20(金) 09:43:34.31ID:CsrKNpAp
>>530
(>>558の続き)
録画させてから108分後のときは、録画中の状態になる。120分録画させてビデオテープを使い切るときも、放映ドラマの録画中。
録画させてから104分後のときも、録画中の状態になる。120分録画させてビデオテープを使い切ると、放映ドラマの録画中。
だから、設定されている答えの候補になるかも知れない「4の104分後」、「5の108分後」は両方否定される。
空気を読んで計算して答えを出すと、本来の答えの候補は105分後となるだろうから、
104分や、108分より前の時間の、1の92分後、2の96分後、3の100分後 も自動的に否定される。
但し、本来の答えの候補に挙げられていなければならないだろう「105分後」も、論理的には>>555-556とほぼ同様にして否定される。

561132人目の素数さん2018/04/20(金) 10:08:09.09ID:xmUGQ/kr
>>548
>34人
ありがとうございます。
問題文を読み間違っていました。

562132人目の素数さん2018/04/20(金) 13:06:44.51ID:Tvdpa5s3
>>559
a>1→a^(1/n)>1→a^(m/n)>1→a^(p/q+m/n)>a^(p/q)

563132人目の素数さん2018/04/20(金) 13:50:27.74ID:Qlu7Mngh
>>562
つまりこういうことですね
a>1かつn≧1について、
a^(1/n)/a^(1/(n+1))=a^((1/n)-(1/(n+1)))=a^(1/(n(n+1)))>1
またa^(1/(n+1))>1>0
よってa^(1/n)>a^(1/(n+1))

564132人目の素数さん2018/04/20(金) 16:28:05.63ID:IJIdFRBl
nを十分大きく取れば、どのような凸n角形についてもある2本の対角線が存在し、その成す角θが89°<θ<91°となるようにできることをしめせ。

565132人目の素数さん2018/04/20(金) 17:15:43.73ID:sUt8J1eh
>>562 >>563
多分ID変わっていますが質問者です。
指数の比較をするのには思い至りませんでした。ありがとうございます!

566132人目の素数さん2018/04/20(金) 19:40:21.52ID:IJIdFRBl
次の性質Aを持つ3次関数f(x)は存在するか。

A
相異なる2つの整数m,nに対して、
∫[m→n] f(x) dx = Σ[i=m,...,n] f(i)

567132人目の素数さん2018/04/20(金) 19:44:47.32ID:kBC3M94M
>>566
コテ付けたら解いてやるよ

568132人目の素数さん2018/04/20(金) 19:54:02.23ID:vQ5qDpTo
R

569132人目の素数さん2018/04/20(金) 20:48:42.24ID:147T7vxl
無になってもう二度と有になりたくない。

570132人目の素数さん2018/04/20(金) 20:59:22.85ID:147T7vxl
仮想通貨って何?
あと、仮想通貨で数千兆円ぐらい稼ぐことって可能?

571132人目の素数さん2018/04/20(金) 21:31:09.35ID:jvd6DQcz
>>566
fが定数関数でないとすると、任意のnについて、nからn+2に3個以上の極値を持つことになり矛盾する。
よって存在しない
だいたいこんなもん?

572132人目の素数さん2018/04/21(土) 00:05:29.95ID:6FPHCXnZ
カオスと閻魔大王はどっちの方が凄いですか?

573132人目の素数さん2018/04/21(土) 01:07:17.50ID:fdWwIToq
>>566
任意の相異なる2つの整数m,nについて
ってこと?

m<k<nのとき
Σ[i=m,...,n]f(i) = ∫[m→n]f(x)dx
= ∫[m→k]f(x)dx + ∫[k→n]f(x)dx
= Σ[i=m,...,k]f(i) + Σ[i=k,...,n]f(i)
だから f(k) = 0。

任意の整数kに対して、m<k<nとなる整数m,nは
常に見つかるから、fは定数関数0。
3次関数ではないね。
任意の相異なる2つの整数m,nってこと?
∫[m→n] f(x) dx = Σ[i=m,...,n] f(i)

574132人目の素数さん2018/04/21(土) 03:28:00.39ID:xOPOlS/o
nを十分大きく取れば、どのような凸n角形についても、ある2本の対角線でその成す角θが89°<θ<91°となるものが存在する。
このことを示せ。

575132人目の素数さん2018/04/21(土) 09:10:01.16ID:ZdHWeLtB
円周上にn点を近くに取ると対角線の方向はほぼ同じ。

576132人目の素数さん2018/04/21(土) 10:08:35.19ID:I5oMZRza
>>566

f(x) = 4ax^3 +3bx^2 +2cx +d, (a≠0)
とおくと

∫[m,n] f(x) dx = [ ax^4 +bx^3 +cx^2 +dx ](x=m,n) = a(n^4-m^4) +b(n^3-m^3) +c(n^2-m^2) +d(n-m),

Σ[i=m,n] f(i) = a{nn(n+1)^2 -mm(m-1)^2} +b{n(n+1/2)(n+1)-(m-1)(m-1/2)m} +c{n(n+1)-(m-1)m}+d(n+1-m),

辺々引くと
a{nn(2n+1)+mm(2m-1)} +b{n(3n+1)/2 +m(3m-1)/2} +c(n+m) +d,
これが0になるように a〜d を決める。

577132人目の素数さん2018/04/21(土) 10:08:46.65ID:AanhK+hD
θの最大値は望むだけ0に近くできる、と。

578132人目の素数さん2018/04/21(土) 10:09:09.62ID:xOPOlS/o
>>575
では条件を追加してください

579132人目の素数さん2018/04/21(土) 11:11:10.47ID:ZdHWeLtB
不用。

580132人目の素数さん2018/04/21(土) 11:48:42.07ID:vGTq09p2
>>574
アホだな
妄想だけで出題した気になってるんじゃない?

581132人目の素数さん2018/04/21(土) 11:58:56.64ID:xOPOlS/o
次の命題(P)が真となるための条件について述べた文章(S)の空欄を埋めよ。

(P)nを十分大きく取れば、条件(A)を満たすどのような凸n角形についても、ある2本の対角線でその成す角θが89°<θ<91°となるものが存在する。

(S)凸n角形のある3頂点A,B,Cについて、( )<∠ABC<( )である。

582132人目の素数さん2018/04/21(土) 13:16:11.88ID:I5oMZRza
>>544

aを固定する。
bで偏微分して (1/2)a + (2/3)b +c = 0,
cで偏微分して (2/3)a + b + 2c = 0,
よって (b,c) = (-a,a/6) で最小値 aa/180
 a/6が分数になる場合もあるので、実際は↑以上。

(a,b,c) = (±1,干1,0) のとき最小値 1/30

583132人目の素数さん2018/04/21(土) 14:40:41.93ID:gw7skIiR
lim[n→∞](1/n)*{(n+1)(n+2)…・2n}^(1/n)=4/e
の証明が分かりません。

584132人目の素数さん2018/04/21(土) 15:06:06.18ID:I5oMZRza
>>583

(左辺) = {(1+1/n)(1+2/n)…(1+n/n)}^(1/n) = {Π[k=1,n] (1+k/n)}^(1/n),

log(左辺) = (1/n)Σ[k=1,n] log(1+1/k)

→ ∫[1,2] log(x) dx = [ x・log(x) -x ](x=1,2) = 2 log(2) -1, (n→∞)

585132人目の素数さん2018/04/21(土) 16:01:18.66ID:I5oMZRza
>>576 の例

b=d=0 のとき f(x) は奇函数で、
∫[-n,n] f(x)dx = 0,
Σ[i=-n,n] f(i) = 0,

一方、f(x) = f(0) (定数函数)のときは
∫[m,n] f(x)dx = (n-m) f(0),
Σ[i=m,n] f(i) = (n-m+1)f(0),
となる。

586132人目の素数さん2018/04/21(土) 17:45:58.51ID:gw7skIiR
>>584
ありがとうございます。
α_n>0,α_n→ならばΠ[k=1 n]α_k→α。ただしαは+∞であってもよい。という定理を用いての場合もお願い出来ますか?

587132人目の素数さん2018/04/21(土) 20:09:47.49ID:aiX9jtnB
>>582

最後の行の結論は
それ以前の考察からどういう帰結でみちべけるのでしょうか

588132人目の素数さん2018/04/21(土) 20:32:32.84ID:329Sd+iD
すみません、簡単な問題なのですが

ある仕事をAが1人ですると12日かかり、Bが1人ですると15日かかる。この仕事をAが3日間した後、AとBの2人で何日間かして終わった。Aが始めてから何日目で仕事を終えたか。

答えは8日目なのですが、途中式がわかりませんお願いします

589132人目の素数さん2018/04/21(土) 21:34:58.24ID:k7yShOEX
Let the amount of the task be 60.
A does 60/12 = 5 a day,
and B does 60/15 = 4 a day.
A worked 3 days, i.e. did 5 x 3 = 15,
and 60 - 15 = 45 is remained.
It will be fulfilled in 45/(5+4) = 9 days.

590132人目の素数さん2018/04/21(土) 21:57:22.11ID:5wFe7xIz
>>470
数セミのバックナンバー眺めてたら同じような問題があった

591132人目の素数さん2018/04/21(土) 22:28:42.50ID:OYwZr+av
>>587

(b,c) が全実数をわたる最小値は aa/180 以上であるが、整数に限ればそれ以上になる。
|a|≧3 の場合は 1/20 以上となり、1/30 より大きいから、最小ではない。
a=±2 の場合も 1/45 以上となるが、整数に限れば (b,c) = (-a,0) のとき 2/15, 最小ではない。
a=±1 の場合は 1/180 以上となるが、整数に限れば (b,c) = (-a,0) のとき 1/30 となる(最小値)。
--------------------------------------------------
(参考)
aを固定して、(b,c)面内で(-a,a/6) の周りにγ/2だけ回す:
 b = Bcos(γ/2) + Csin(γ/2) -a,
 c = -Bsin(γ/2) + Ccos(γ/2) +a/6,
 但し、tanγ = 3/2, sinγ = 3/√13,cosγ = 2/√13
    tan(γ/2) = (√13 -2)/3,
このとき
 (与式) = (1/5)aa + (1/3)bb +cc +(1/2)ab +bc +(2/3)ca
 = aa/180 + {(4-√13)/6}BB + {(4+√13)/6}CC
 ≧ aa/180,

592132人目の素数さん2018/04/21(土) 22:53:54.28ID:OYwZr+av
>>564 >>574 >>581

垂直がお好きですね。

磁石は磁場と平行/反平行に向いたとき安定しますが、稀に垂直に向いたとき安定するものがあるらしい。

昔々のことですが、弱い強磁性のメカニズムとして、伊達先生(阪大)たちは磁化の

強磁性成分と反強磁性成分とが垂直に共存する(canted spin,canted ferro.)モデルを考えたらしい。

現在はジャロシンスキー・守谷(D-M)相互作用に統一されたようですが…

593132人目の素数さん2018/04/22(日) 07:30:45.02ID:Hn7ceANe
(A+B)・(B+C)・(C+~A)

情報回路でブール代数が出てきたんだが
上の論理演算を次の論理演算にどう変換したらいい?

(A+B)・(C+~A)

594132人目の素数さん2018/04/22(日) 08:00:09.73ID:uI7WBBJq
>>593
オンオフ表作って比較するだけ

595132人目の素数さん2018/04/22(日) 08:19:54.69ID:XPQebsTa
わからないんですね

596132人目の素数さん2018/04/22(日) 09:18:38.30ID:hOP/zusy
>>593
(A+B)・(C+~A)=B・(C+~A)+C・(A+B)
(∵分配則、B・C=B・C+B・C)

597132人目の素数さん2018/04/22(日) 11:02:00.06ID:bsRsiOAE
>>595
アンタの心理が一番わからん

598132人目の素数さん2018/04/22(日) 12:51:44.83ID:9hXwjWmh
劣等感仲間が欲しいのさ

599132人目の素数さん2018/04/22(日) 15:17:50.74ID:IcNN5Npn
荒らしの心理を分かろうとするあんたはお頭が緩い

600132人目の素数さん2018/04/22(日) 15:44:08.13ID:/EEowpSB
1つの団体Gが目的Pを行うとき
団体Gに集束する個をL1、L2、L3…とすると
L1、L2、L3…が結束すること否とする条件Cが団体Gに対してあれば
L1、L2、L3…はどこに集束して目的Pを行うべきか
ただし、団体を新たにつくることは認めず、個だけで目的Pを達成することはできないものとする

601132人目の素数さん2018/04/22(日) 16:29:53.72ID:mKs32fdH
R^nの点列でlim[n→∞](a_n)=bのときB={a_n | n∈N}∪{b}とするとBが離散空間にならないことはあるのでしょうか?

602132人目の素数さん2018/04/22(日) 19:14:59.51ID:bKI0hCJr
>>601
{1/n} ∪ {0}とか

603132人目の素数さん2018/04/22(日) 19:16:37.60ID:bKI0hCJr
あ、離散にならないときか。an=0で{an}∪ {0}とか離散集合ではない。

604132人目の素数さん2018/04/22(日) 20:12:51.71ID:a2wKv+Zy
a_m=sin(m+1)°-sinm°とおく。
|a_m-(1/10)|を最小にするmを求めよ。

605132人目の素数さん2018/04/22(日) 20:14:20.36ID:nNnPd1ym
一家離散

606132人目の素数さん2018/04/22(日) 21:10:03.19ID:CmriSAA7
一家理III!?
やりますねぇ!

607132人目の素数さん2018/04/22(日) 22:56:35.32ID:vLEqmq+X
x^3+xy - xz^2+yz
因数分解を解説付きでぷりーず

608132人目の素数さん2018/04/22(日) 23:02:16.36ID:IC8tmVIw
僕にはわかりません。おやすみなさい。

609132人目の素数さん2018/04/22(日) 23:02:56.61ID:XPQebsTa
>>607
このような場合、一番次数の小さい文字について整理するのが定石です

xの次数は3、yの次数は1、zの次数は2ですから、yについて整理しましょう

x^3+xy - xz^2+yz
=y(x+z)+x^3-xz^2
=y(x+z)+x(x-z)(x+z)
=(x+z)(y+x(x-z))
=(x+z)(x^2-xz+y)

610132人目の素数さん2018/04/22(日) 23:05:15.08ID:a2wKv+Zy
x^3-3x+1
因数分解プリーズ

611132人目の素数さん2018/04/22(日) 23:38:56.67ID:CmriSAA7
>>609
簡単な問題にはすぐレスがつくんですね

612132人目の素数さん2018/04/22(日) 23:45:10.78ID:BTuLXC51
10101(2)÷11(2)
これ111で合ってますか?

613132人目の素数さん2018/04/22(日) 23:48:09.62ID:uI7WBBJq
>>601
>離散空間
定義は?

614132人目の素数さん2018/04/22(日) 23:49:56.68ID:vLEqmq+X
>>609
(x+z)(y+x(x-z)) にはなってたんですがなんかカッコ3つに収めないといけないような気になってました。
ありがとうございます

615132人目の素数さん2018/04/22(日) 23:53:38.28ID:a2wKv+Zy
四面体ABCDを直線ABを含むある平面αで2つの立体SとVとに切断する。
辺CDの中点をMとする。このとき、SとVが合同であるための必要十分条件は、
「αが3点A,B,Mを通る」
であることを示せ。

616132人目の素数さん2018/04/22(日) 23:55:37.80ID:JkNyrqJd
△ABCにおいて、AB=6 CA=8 cosA=1/4のとき、
頂点Bから辺CAに引いた垂線と辺CAとの交点をD、
頂点Cから辺ABに引いた垂線と辺ABとの交点をEとすると、線分EDの長さは何になるか?
という問題がわかりません、
そもそも、頂点Bから辺CAに垂線を引いたらBAと干渉すると思うのですが、思い違いでしょうか?

617132人目の素数さん2018/04/22(日) 23:57:21.22ID:XPQebsTa
>>613
わからないんですね

618132人目の素数さん2018/04/23(月) 00:07:18.93ID:vdzBGFy9
>>616
すいません、勘違いしてました、干渉はしませんがやはりわかりませんでした

619132人目の素数さん2018/04/23(月) 00:07:48.36ID:OdXqVsek
>>613
相対位相が離散な部分位相空間のつもりでした
この場合、
{1/n | nは1以上}は離散空間
{1/n | nは1以上}∪{0}は離散空間でない
でしょうか?

620132人目の素数さん2018/04/23(月) 00:18:47.86ID:uSkOK2EW
そうですね

621132人目の素数さん2018/04/23(月) 00:28:39.99ID:2VziMBPk
>>617
君の方は才能なさそうね

622132人目の素数さん2018/04/23(月) 00:31:59.90ID:2VziMBPk
その定義なら
>>601
は普通は離散にならない
離散になるのは途中からずっとbのとき

623132人目の素数さん2018/04/23(月) 00:40:37.29ID:uSkOK2EW
>>622
位相空間が離散であるとは、任意の部分集合が開集合となることです
位相空間Xの部分集合Aが部分位相空間になるとは、Aの開集合系が、Xの開集合とAの共通部分で与えられることです

>>619の上の集合Sは、この意味において離散となります
なぜならば、1/nは順序において離散的なので、その点を孤立させるようなユークリッド位相における開集合を選ぶことができ、それとSとの交わり、すなわち1/nは部分位相空間における開集合となり、すなわちS内の任意の点は開集合となるからです

ここの回答者って、こんなこともわからないんですね

624132人目の素数さん2018/04/23(月) 01:00:11.61ID:N64PXsPR
>>619の上の集合Sは>>601とは関係ない

625132人目の素数さん2018/04/23(月) 01:01:05.93ID:doPt+XIR
>>623
その定義なら>>619
S={1/n | nは1以上}∪{0}
は相対位相において{0}は開集合にならん希ガス。
0を含むどんな開集合OをとってもO∩S={0}にならんのでわ?

626132人目の素数さん2018/04/23(月) 01:02:46.74ID:doPt+XIR
>>623
すまん。>>619の"上の"集合か。orz

627132人目の素数さん2018/04/23(月) 01:03:19.75ID:uSkOK2EW
私はSは上の集合だと言ったはずですけど?
>>622が定数続かないと離散にならないとかほざいてたので、離散がわからないんだろうな、と思っただけです

628132人目の素数さん2018/04/23(月) 01:03:30.81ID:2VziMBPk
>>623
>>>619の上の集合Sは、この意味において離散となります
関係ないことしか言えない才能の持ち主か

629132人目の素数さん2018/04/23(月) 01:04:20.54ID:2VziMBPk

630132人目の素数さん2018/04/23(月) 01:04:36.72ID:uSkOK2EW
>>628
あなたが回答者に嘘を教えているのにダメ出ししているんですよ
恥ずかしくないんですかね

631132人目の素数さん2018/04/23(月) 01:04:54.99ID:uSkOK2EW
質問者に嘘を教える、ですね

632132人目の素数さん2018/04/23(月) 01:09:25.07ID:2VziMBPk
>>626
謝る必要は無いがそれでも
謝ることは妨げられていない

633132人目の素数さん2018/04/23(月) 01:09:50.16ID:2VziMBPk
>>630
どこが嘘?

634132人目の素数さん2018/04/23(月) 01:10:09.47ID:uSkOK2EW
>>632
>>622で嘘のレスを垂れ流したことは謝らなくても良いのでしょうか?

635132人目の素数さん2018/04/23(月) 01:10:48.92ID:uSkOK2EW
>>633
>>619
>{1/n | nは1以上}は離散空間

となってますね
bが続いてるわけではないのに

636132人目の素数さん2018/04/23(月) 01:11:42.54ID:2VziMBPk
ていうか
途中からずっとbじゃなくて
{an|n∈N}∪{b}が離散になる例をお願い

637132人目の素数さん2018/04/23(月) 01:12:04.36ID:2VziMBPk

638132人目の素数さん2018/04/23(月) 01:14:05.13ID:2VziMBPk
ていうか
関係ないことしか言えない才能の持ち主か

639132人目の素数さん2018/04/23(月) 01:14:26.43ID:uSkOK2EW
ころす

640132人目の素数さん2018/04/23(月) 01:15:48.53ID:uSkOK2EW
>>638
を殺害する方法がわかりません
よろしくお願いします

641132人目の素数さん2018/04/23(月) 01:16:28.99ID:2VziMBPk
>>634
トンチンカンなことを言って質問者を惑わしたことは謝らないのですね

642132人目の素数さん2018/04/23(月) 01:16:52.34ID:2VziMBPk

643132人目の素数さん2018/04/23(月) 01:17:02.04ID:uSkOK2EW
>>641
あなたを殺す方法を教えてください
わからないんですか?

644132人目の素数さん2018/04/23(月) 01:17:55.03ID:2VziMBPk
>>623
>ここの回答者って、こんなこともわからないんですね
ジワジワくる

645132人目の素数さん2018/04/23(月) 01:18:34.61ID:uSkOK2EW
>>644
自分を殺す方法もわからないなんて、ここの回答者のレベルって低いんですね

646132人目の素数さん2018/04/23(月) 01:18:45.51ID:2VziMBPk
>>630
>恥ずかしくないんですかね

647132人目の素数さん2018/04/23(月) 01:19:21.53ID:2VziMBPk

648132人目の素数さん2018/04/23(月) 01:19:36.26ID:uSkOK2EW
>>646
自分を殺す方法もわからないなんて恥ずかしくないんですか?

649132人目の素数さん2018/04/23(月) 01:19:52.51ID:2VziMBPk

650132人目の素数さん2018/04/23(月) 01:20:41.72ID:uSkOK2EW
>>636
離散位相入れれば離散になってますよ

651132人目の素数さん2018/04/23(月) 01:22:45.10ID:2VziMBPk

652132人目の素数さん2018/04/23(月) 01:23:21.43ID:2VziMBPk
健忘症も併発してるらしいな

653132人目の素数さん2018/04/23(月) 01:23:31.96ID:uSkOK2EW
>>651
いい加減自殺する方法はわかったんですか?
早くしてくださいね
それとも、ここの回答者って自殺もできないくらいレベルが低いんですか?
恥ずかしいですね

654132人目の素数さん2018/04/23(月) 01:23:59.53ID:uSkOK2EW
>>652
痴呆なら早く自殺した方が良いのではないですか?

655132人目の素数さん2018/04/23(月) 01:25:01.60ID:2VziMBPk
>>654

自分に言ってあげた方がよさげよ

656132人目の素数さん2018/04/23(月) 01:25:57.34ID:2VziMBPk

657132人目の素数さん2018/04/23(月) 01:26:49.38ID:uSkOK2EW
>>655
投影というやつですね
自分の非を認めたくないために相手のせいにするらしいです
かわいそうですね

658132人目の素数さん2018/04/23(月) 01:28:43.75ID:2VziMBPk
>>650
>離散位相入れれば離散になってますよ
w
トンチンカンなことしか言わないのは質問者に謝らなくていいんですね
>>619
>相対位相が離散な部分位相空間のつもりでした
w
>>620
>そうですね

659132人目の素数さん2018/04/23(月) 01:30:27.04ID:uSkOK2EW
自分のことをさも相手のことのようにすることしかできないんですね
病気なようです

660132人目の素数さん2018/04/23(月) 01:31:29.77ID:2VziMBPk

661132人目の素数さん2018/04/23(月) 01:32:10.25ID:2VziMBPk
>>659
>さも
キモ

662132人目の素数さん2018/04/23(月) 01:33:05.08ID:uSkOK2EW
早いうちに病院に行った方がいいですよ
もう多分手遅れだと思いますけど、多少は良くなるかもしれませんね

663132人目の素数さん2018/04/23(月) 01:34:41.70ID:2VziMBPk
>>650
>離散位相入れれば離散になってますよ
ジワジワくる

664132人目の素数さん2018/04/23(月) 01:35:53.74ID:uSkOK2EW
早く病院来ないかなー

665132人目の素数さん2018/04/23(月) 01:36:34.26ID:uSkOK2EW
病人はここにはいられませんからね
早く入院してください

666132人目の素数さん2018/04/23(月) 01:51:22.88ID:VOs9jbZl
深夜に何してるんだ君たちは
今日は月曜だぞ

667132人目の素数さん2018/04/23(月) 02:47:54.64ID:dgB0vVZ9
まーた劣等感が発狂してるよ

668132人目の素数さん2018/04/23(月) 07:23:21.91ID:2VziMBPk
>>664
>病院来ないかな
ジワジワくる

669132人目の素数さん2018/04/23(月) 07:29:37.11ID:uSkOK2EW
精神病患者さんおはようございます
今日は病院行きましょうね

670イナ ◆/7jUdUKiSM 2018/04/23(月) 11:04:02.38ID:c0/YtDe2
/ ̄ ̄ ̄ ̄ ̄ ̄ ̄/\
 ̄ ̄∩∩ ̄ ̄ ̄ ̄\/|
_ (´e`) >>615 / |
 ̄|(っц)~___/| |
]| ‖ ̄ ̄ ̄ ̄‖ | /
_| ‖ □ □ ‖ |/
_ `‖____‖/頂点C、頂点Dから平面αに垂線CE、垂線DFを引く。
錯角は等しい。二点間の中点Mは二点を二分する。ゆえにCE=DFすなわち△ABMを底面とする三角柱C-ABMと三角柱D-ABMは同じ体積である。

671132人目の素数さん2018/04/23(月) 11:43:53.63ID:7TTh+rzs
月曜はまだバカのなごりが残ってるな

672132人目の素数さん2018/04/23(月) 12:53:51.25ID:csHJcyqY
そだね〜

673132人目の素数さん2018/04/23(月) 14:03:45.56ID:14r1jv8E
rは実数、nは正の整数とする。
f(x)=(1-rx)(1+x+x^2+...+x^(n-1))
はいくつの極大値および極小値を取るか。

674132人目の素数さん2018/04/23(月) 14:06:18.46ID:23JULNvT
下記問題ですが、
https://imgur.com/a/xxmDfLM
答:23個(Wセミナー・TAC発表)
となってるらしいのです。おかしくないですか?
過去にも話題になっているみたいです。
http://2chb.net/r/govexam/1014399425/
上記URLの712
このときの結論は25個みたいですが、
予備校が2校とも同じ23個となっているのが気になります。

675132人目の素数さん2018/04/23(月) 14:09:57.10ID:3Qy1jOHW
もぐもぐ

676132人目の素数さん2018/04/23(月) 18:03:18.87ID:RGIMmfay
角砂糖25個準備すればいいんじゃね

677132人目の素数さん2018/04/23(月) 18:14:00.88ID:tRoec2zq
「社長いじめお休み。」と聞こえてきました。
変なレッテル張りはやめて下さいね。

誰が言っているか分からないようにしないと発言できない

卑怯な顔の見えない日本人へ

678132人目の素数さん2018/04/23(月) 18:16:03.68ID:tRoec2zq
「すいません。」
と外から聞こえてきました。

私は、誰が何を謝ったのか理解できませんし、それでいいのでしょうか?

本当に失礼な対応だと思います。

679132人目の素数さん2018/04/23(月) 18:29:43.58ID:grwF+KXY
外ってどこですか
誰がどんな状況で言ったのか理解できませんし、それでいいのでしょうか? 

スレの内容にそぐわない本当に失礼なレスだと思います。

以上、スレチなレス失礼いたします。

680132人目の素数さん2018/04/23(月) 18:44:17.63ID:hJ48K8CX
>>674
ブロックを浮かすことができないなら
下に15個
壁として10個
で25個だと思うけど

681132人目の素数さん2018/04/23(月) 18:45:52.06ID:tRoec2zq
卑怯者のやり口を公開することは、公益に資すると考えますが。

682132人目の素数さん2018/04/23(月) 18:46:17.61ID:hJ48K8CX
>>674
というか2002年のスレッドっておっさん何歳や

683132人目の素数さん2018/04/23(月) 18:54:11.19ID:uU0H3pxT
大日如来とアレクサンドル・グロタンディークはどっちの方が凄いの?

684132人目の素数さん2018/04/23(月) 19:24:52.54ID:uvXbUw6g
>>674
25個に1票。つーか23個ってる解答見ないとなんとも…

685132人目の素数さん2018/04/23(月) 19:46:28.00ID:2VziMBPk
>>674
>Wセミナー・TAC
アホなんだろ

6866742018/04/23(月) 20:19:12.87ID:23JULNvT
25個だと小学生の標準レベルの問題ですね。
他の問題のレベルと差が大きいのが気がかり。

687132人目の素数さん2018/04/23(月) 21:04:45.27ID:VGN1rAK6
隙間なく積み重ねて
とかなければ23でもできるかもしれんが

688イナ ◆/7jUdUKiSM 2018/04/23(月) 21:58:26.93ID:c0/YtDe2
>>616こうじゃないか?
(√14)/2 前>>670
/ ̄ ̄ ̄ ̄ ̄ ̄ ̄/\
[ ̄ ̄∩∩ ∩∩ ̄\/|
[_((-_-)-_-)) / |
 ̄|`(っu~)U⌒U、/| |
]| ‖υυ~UU~‖ |/|
_| ‖ □ □ ‖ / |
 ̄|`‖____‖/| |
]| ‖ ̄ ̄ ̄ ̄‖ |/|
_| ‖ □ □ ‖ / |
 ̄|`‖____‖/| |
]| ‖ ̄ ̄ ̄ ̄‖ |/ 
_| ‖ □ □ ‖ / 
 ̄\‖____‖/  /
_________/|
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ □ ‖ |
________‖/|
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ □,彡ミ、|
_______川`,`;,
________U⌒U、;
/_/_/_/_/_;~U U~
/_/_/_/_○_/_/_
/_/_/_/_/_/_/_
AD=ABcosA=6×(1/4)
=3/2
CD=8−(3/2)=13/2
同様にAE=2、BE=4
BC~2=BE~2+EC~2
=4~2+60
=56
BC=2√14
∴ED=(1/4)BC=(√14)/2

689イナ ◆/7jUdUKiSM 2018/04/23(月) 22:07:19.98ID:c0/YtDe2
>>616ちがうな。前>>688
/ ̄ ̄ ̄ ̄ ̄ ̄ ̄/\
[ ̄ ̄∩∩ ∩∩ ̄\/|
[_((`o`)-_-)) / |
 ̄|`(っu~)U⌒U、/| |
]| ‖υυ~UU~‖ |/|
_| ‖ □ □ ‖ / |
 ̄|`‖____‖/| |
]| ‖ ̄ ̄ ̄ ̄‖ |/ 
_| ‖ □ □ ‖ / 
 ̄\‖____‖/  /
_________/|
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ □,彡ミ、|
_______川`,`;,
________U⌒U、;
/_/_/_/_/_;~U U~
/_/_/_/_○_/_/_
/_/_/_/_/_/_/_
AD=ABcosA=6×(1/4)
=3/2
CD=8−(3/2)=13/2
同様にAE=2、BE=4
BC~2=BE~2+EC~2
=4~2+60
=76
BC=2√19
∴ED=(1/4)BC=(√19)/2

690132人目の素数さん2018/04/23(月) 22:21:27.55ID:pEMgxG0J
南中から翌日の南中を迎えるまでって、地球は360°以上自転してるよね?
ある日の南中から365回目の南中を迎える(このとき公転軌道で同じ位置に戻るとする)までに地球は366回自転しているはずだが

691イナ ◆/7jUdUKiSM 2018/04/23(月) 23:31:06.42ID:c0/YtDe2
>>690太陽と月は違うでね。ヾ(´・ω・`)前>>689月は地球に対していつも同じ面を見せてる。けど地球は太陽に対していつも同じ面を見せてはいない。
地球が太陽のまわりを一周するのに365日かかる年に、地球は365回自転してるし、366日かかる年には、366回自転する。地球は太陽のまわりを一回公転するあいだに一回分余計に自転したりしない。月とは違うのだよ、月とは。
/ ̄ ̄ ̄ ̄ ̄ ̄ ̄/\
[ ̄ ̄∩∩ ∩∩ ̄\/|
[_((-_-)-_-)) / |
 ̄|`(っ◎)U⌒U、/| |
]| ‖υυ~UU~‖ |/|
_| ‖ □ □ ‖ / |
 ̄|`‖____‖/| |
]| ‖ ̄ ̄ ̄ ̄‖ |/ 
_| ‖ □ □ ‖ / 
 ̄\‖____‖/  /
_________/|
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ □ ‖ |
________‖/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_

692132人目の素数さん2018/04/24(火) 00:12:54.04ID:AZFVNFld

693132人目の素数さん2018/04/24(火) 00:38:22.37ID:7fnSAUCr
>>691
君もう回答しなくていいよ

694 【大凶】 2018/04/24(火) 00:48:02.54ID:Y0eakZ53
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄/\
 ̄ ̄ ̄∩∩ ̄ ̄ ̄\/|
__ (-_-))   / |
 ̄|\(っu~)__/| |
]| ‖υυ ̄ ̄‖ |/|
_| ‖ □ □ ‖ | |
 ̄|`‖____‖/| |
]| ‖ ̄ ̄ ̄ ̄‖ |/ /
_| ‖ □ □ ‖ / /|
 ̄\‖____‖/ / |
_________/| |
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ | |
□ □ □ □ ‖ |/
________‖/_/_/_/_/_/_/_/_/_/_/_/_/一回分余計に自転してんのかもしれんなぁ。

695132人目の素数さん2018/04/24(火) 01:14:13.27ID:43b+grE0
>>691

「もう、きみには頼まない」〜石坂泰三の世界〜 文春文庫(1998/June) 333p.680円

http://books.bunshun.jp/ud/book/num/9784167139230

696132人目の素数さん2018/04/24(火) 01:20:01.64ID:I5sDaBOJ
自転は一日一回。

697132人目の素数さん2018/04/24(火) 02:12:03.24ID:ti4gnjBW
△ABCの垂心をHとし、直線AHとBCの交点をD、直線BHとACの交点をE、直線CHとABの交点をFとする。

3つの比AH:HD、BH:HE、CH:HF、のいずれもが2:1となるとき、△ABCはどのような三角形か。

698イナ ◆/7jUdUKiSM 2018/04/24(火) 02:23:38.19ID:Y0eakZ53
2:1ってことはHが△ABCの重心。
CH:HD=2:1
∠CHD=60°
∴△ABCは正三角形

699132人目の素数さん2018/04/24(火) 02:27:09.95ID:7fnSAUCr
そういえば「地球の出」とかいう映像がよく出回るが、
それは衛星が移動してるから地球が上ってくるように見えるわけで
月面上の定点からは地球はいつも同じ場所にある

700132人目の素数さん2018/04/24(火) 05:03:30.24ID:ti4gnjBW
x,yについての連立方程式
ax+(1-b)y=0
bx+(1-a)y=0
が-1≤x≤1かつ-1≤y≤1の範囲に解を持つようなa,bの条件を求めよ。

701132人目の素数さん2018/04/24(火) 07:17:37.19ID:iv9CM63V
>>700
x=y=0

702132人目の素数さん2018/04/24(火) 07:50:51.27ID:ti4gnjBW
pを整数とするとき、n^2+pが素数となるような整数nが存在することを示せ。

703132人目の素数さん2018/04/24(火) 08:55:31.22ID:BdrIjttH
今日は燃えるゴミの日ではありません

704132人目の素数さん2018/04/24(火) 09:00:04.44ID:I5sDaBOJ
n^2-169.

705132人目の素数さん2018/04/24(火) 09:07:56.55ID:u06iXbKi
p=0

706132人目の素数さん2018/04/24(火) 09:16:34.69ID:ehelLLhb
n=2^56-3^12

707132人目の素数さん2018/04/24(火) 16:50:02.13ID:00Iht7FW
四角形

縦幅300cm 横幅200cm 縦の中心座標x ←→  横の中心座標y ↑↓

が、与えられた時の 四角形の角の座標(左上、左下、右上、右下)の求め方

計算式も教えて下さい。

表記は4つの値です。(x,y)座標では有りません。

708132人目の素数さん2018/04/24(火) 16:52:54.10ID:ehelLLhb
眠い。

7097072018/04/24(火) 16:54:27.30ID:00Iht7FW
問題を修正します。
巨大なXY内に有る四角形
その中の、小さな四角形で有る。各、角座標の求め方でした。

710132人目の素数さん2018/04/24(火) 19:23:43.20ID:vkZZRqxG
うんこぶりぶり。

711132人目の素数さん2018/04/24(火) 19:34:51.33ID:vkZZRqxG
うんこぶりぶり。

712132人目の素数さん2018/04/24(火) 21:22:12.67ID:ti4gnjBW
一辺の長さ3の正三角形Tの重心を中心とする円Cは、Tの各辺の3等分点を通る。Tの外部かつCの内部である領域の面積を、小数点以下一桁まで求めよ(小数点以下二桁目以下は切り捨てよ)。

713イナ ◆/7jUdUKiSM 2018/04/24(火) 23:02:13.05ID:Y0eakZ53
>>712
円Cの面積=π
円C内の正六角形の面積
={(√3)/4}×6
=(3√3)/2
求値=(円Cの面積−円C内の正六角形の面積)÷3
=π/3−(√3)/2

714イナ ◆/7jUdUKiSM 2018/04/24(火) 23:15:27.12ID:Y0eakZ53
ちがうちがう。前>>713
円Cの面積=π
円C内の正六角形の面積
={(√3)/4}×6
=(3√3)/2
求値=(円Cの面積−円C内の正六角形の面積)÷2
=π/2−(3√3)/4
=1.57……−1.299……
=0.27……
小数点以下第二位を切り捨てると、
(答え)0.2

715132人目の素数さん2018/04/25(水) 02:03:44.29ID:5oI40ZZY
ある地域に住む人々の通話時間に関して、以下のことが分かっている。

・ちょうど0秒の通話が起こること、および4時間以上の通話が起こることの確率はそれぞれ0である。
・xは実数とする。0<x<14400において、ちょうどx秒の通話が起こる確率p(x)は0でない。
・正数εに対し、ちょうどx+ε秒の通話が起こる確率は{1+1/(100+ε^2)}p(x)である。

このとき、無作為に選んだ通話が1時間以上2時間以下で終わる確率を求めよ。

716132人目の素数さん2018/04/25(水) 02:38:18.88ID:KoaEOy7E
>>715
そんな分布ありえへんやん。
F(x)を分布関数として各xに対しp(x)=F(x+0)-F(x-0)>0ならr(x) ∈ (F(x-0),F(x+0)) ∩ Qを選べるけど、このときrは非加算無限集合から加算無限集合への単射を与えてしまう。

717132人目の素数さん2018/04/25(水) 08:55:30.38ID:HT3lQlev
f(x)= x^n + ax^(n-1) + bx^(n-2) + cx^(n-2) + ・・・ + dというn次多項式関数について
∫_[0,1] { f(x) }^2 dx を考えるとき、これが最小になるのは
  a=(2n-1)/(2n) かつ b=c=・・・=d=0 のとき
といえるでしょうか。
grapesという描画ソフトで色々試してたらこのような予想が建ったのですが、どうでしょうか。

718132人目の素数さん2018/04/25(水) 09:32:01.12ID:L535rzaS
x^2-x+1/6.

719132人目の素数さん2018/04/25(水) 09:46:47.96ID:wpAcXao0
>>717
おめでとう、ルジャンドル多項式の再発見

720132人目の素数さん2018/04/25(水) 12:18:11.08ID:C3c2S/2O
>>717
f(x)をルジャンドル多項式Pk(x)で
f(x) = Σ[k=0,n]ck*Pk(2x-1)
のように展開して L^2ノルムをとると Pkの直交性より
∫[0,1]{f(x)}^2dx = Σ[k=0,n](ck)^2*∫[0,1]{Pk(2x-1)}^2dx
とあらわされる。したがって c0=c1=…=cn-1=0 のときが最小で、このとき
f(x) = Pn(2x-1)/C[2n,n] = (1/C[2n,n])Σ[k=0,n]C[n,k]C[n+k,k](-1)^(n-k)x^k
となって、最小値は
∫[0,1]{Pn(2x-1)/C[2n,n]}^2dx = 1/{(2n+1)C[2n,n]^2}

ちなみにL^∞ノルムを最小にするのはチェビシェフ多項式

721132人目の素数さん2018/04/25(水) 12:24:16.92ID:osj3YN74
>>717
grapesいいよね
直感的に操作できるし
function viewも似たような感じだよね

722132人目の素数さん2018/04/25(水) 12:41:28.92ID:vQaR2oax
>>721
GRAPES も FUNCTION VIEW も GeoGebra と比べると物足りない
国産だから応援したいのだが

723132人目の素数さん2018/04/25(水) 13:14:50.85ID:KpuHTCeL
なんやLinux版ないんかい

724132人目の素数さん2018/04/25(水) 18:20:54.52ID:oLKG+u2h
日本人のつくるフリーソフトがいまいち発展しないのはやっぱり個人でやってるからじゃないかなぁ。
あっちのほうはコミュニティーつくってみんなで発展させていく。
その点そもそも日本人は英語できないからなぁ。
もうこれからの時代フリーウェアの類はGit Hubとかにあげてかないとダメな希ガス。

725132人目の素数さん2018/04/25(水) 18:26:19.63ID:FkaqxiNH
0≤θ≤2πとする。
x=4sinθ(1-cosθ)
y=4cosθ(sinθ+cosθ)
で表される曲線で囲まれる部分の面積を求めよ。

726132人目の素数さん2018/04/25(水) 19:46:19.38ID:oLKG+u2h
自己交差があるなぁ。

727132人目の素数さん2018/04/25(水) 20:03:14.09ID:sziTp0Xm
そんなんよくあるやろ

7287172018/04/25(水) 22:31:31.41ID:HT3lQlev
>>719 >>721
一般に言えるのですね。
るじゃんドル多項式はウィキで見ましたがあまり簡単そうでもないので
721の書き込みと合わせて良く理解したいと思います。
ありがとうございます。

729132人目の素数さん2018/04/26(木) 00:55:12.41ID:UGs7HCZW
自己交差がなけりゃ公式一発だけど交差してると途端に難しくなるからなぁ

730132人目の素数さん2018/04/26(木) 03:33:19.52ID:tDWfzCNT
背理法で解くらしいんですけど、当たり前のことを示せと言われて意外と難しく手が出ません

問題:ひと月の中で、どの曜日も少なくとも4回現れることを示せ。

731132人目の素数さん2018/04/26(木) 05:09:48.23ID:BjPCNnbN
全部3回以下なら21日以下で矛盾

732132人目の素数さん2018/04/26(木) 05:11:54.71ID:BjPCNnbN
訂正
ある曜日が3回以下のとき他は最大でも4回
このとき最大でも3+4*6=27日しかない

733132人目の素数さん2018/04/26(木) 06:20:01.24ID:3zpz03fU
1-7.
8-14.
15-21.
22-28.

734132人目の素数さん2018/04/26(木) 08:55:44.10ID:t+k3+Hbg
>>729
交差あってもいいんじゃないの?表裏はあるけど

735132人目の素数さん2018/04/26(木) 08:57:12.21ID:t+k3+Hbg
>>730
あほか
28日で全部の曜日4回出るわw
あとはそれに追加になるだけ

736132人目の素数さん2018/04/26(木) 10:56:47.56ID:mIq4WS6j
形式的にやるならこう
>>730
3回以下しか現れない曜日があると仮定する。
その曜日の最も早い日をX日とし、その月の最後の日をM日とする。
X日の7日前は当月でないので、X-7<1である。また、その曜日は3回以上現れることがないので、三週間後、つまり21日後は当月でない。つまりM<X+21である。
X-7<1よりX<8であり、Xは整数なのでX≦7である。同様にM≦X+20なので、M≦X+20≦7+20=27となる。
月末の日付が27日以下となる月はないので、3回以下しか現れない曜日があるとした最初の仮定が誤りであることがわかる。

737132人目の素数さん2018/04/26(木) 11:31:44.50ID:erWHa7/x
>>734
交差がなけりゃ
面積=|∫[0,2π]xy'dθ|
でおしまいだけど>>725の問題は0<α<β<πのα,βでP(α) = P(β)となる点があって
面積=|∫[0,α]xy'dθ|+|∫[α,β]xy'dθ|+|∫[β,π]xy'dθ|+|∫[π,2π]xy'dθ|
で絶対値の中の符号が交差点の前後で変化するからわけないとダメ。
でこのα,βがexplicitには出ないので計算量半端ない。
出せなくはないだろうけど面白くもなんともないのでやる気がおきない。

738132人目の素数さん2018/04/26(木) 11:36:36.66ID:erWHa7/x
>>737
正確にはP(0) = P(π)、P(α)=P(β)で2回自己交差してます。やる気お起きん。

739132人目の素数さん2018/04/26(木) 11:48:51.34ID:pQT/sPxe
ある曜日が3回以下しか現れないとする
すると一月は少なくとも28日あるので
少なくとも25日以上は残りの6種類の曜日のみが現れる
6種類で25日なので、どれか一つの曜日は5回現れる
これをxと置く

ここで連続した一週間の間に全ての曜日が現れることに注意すると
一回めのxと二回目のxの間に残りの6種類の曜日が全て現れる
同様に、二回目と三回目の間、三回目と四回目の間、四回目と五回目の間
にもx以外の曜日が現れる
従ってx以外の曜日はそれぞれ4回以上出て来る事になる

これは初めに3回以下しか出てこない曜日があるとしたことに矛盾する
よって矛盾が導かれたので初めの過程は誤りであり、全ての曜日は四回以上現れる

740132人目の素数さん2018/04/26(木) 12:06:13.90ID:JBKCy93h
>>725

グリーンの定理より
(1/2)(xdy - ydx) = ∫[0,2π] (1/2){x(dy/dθ) - y(dx/dθ)} dθ = 8π,

>>726 >>729

自己交差ない

741132人目の素数さん2018/04/26(木) 12:30:54.67ID:JBKCy93h
>>740 は大間違い。取り下げます。orz

>>737 >>738
α = 0.96455795189993440168
β = 2.9624328650873071464

742132人目の素数さん2018/04/26(木) 12:40:01.26ID:3zpz03fU
http://www.wolframalpha.com/input/?i=(4sin(s)(1-cos(s)),4cos(s)(sin(s)%2Bcos(s)))&x=0&y=0

743132人目の素数さん2018/04/26(木) 12:56:18.45ID:yLvP2CrJ
>>739
アホ?

744132人目の素数さん2018/04/26(木) 12:57:29.36ID:yLvP2CrJ
>>725
適当に作った問題らしいわ

745132人目の素数さん2018/04/26(木) 13:02:58.91ID:yLvP2CrJ
>>737
裏側は負の面積で終い

746132人目の素数さん2018/04/26(木) 13:14:09.06ID:erWHa7/x
>>740
してるよ
https://www.wolframalpha.com/input/?i=parametric+plot+((cos+t)*(1%2B(cos+t)),(+sin+t)*((sin+t)%2B(cos+t)))

747132人目の素数さん2018/04/26(木) 13:16:44.61ID:erWHa7/x
>>745
交差してたら0〜2πで積分したものは
|正に回る部分の面積の全体ー負に回る部分の面積の全体|
にしかならないからわけないといかん。

748sage2018/04/26(木) 13:21:30.22ID:QDC27sGW
中心極限定理の証明ってモーメント母関数が重要みたいなのですが、モーメント母関数ってあの形以外ありえないのでしょうか?
たまたまモーメント母関数の定義にあうものでかつ中心極限定理的に便利なのがあの形なだけで、本当は別の形状もあり得たりしないんでしょうか?
せっかくなので自分で考えてみたいのでヒントなどいただけましたら幸いです。
あつかましいですがよろしくお願いします。

749132人目の素数さん2018/04/26(木) 13:26:32.37ID:erWHa7/x
>744
だよね。>>725は自己交差してたらとたんに難しくなるという話知らないで適当に作ってるだけくさい。出せんことはないだろうけど面白くともなんともない。

750132人目の素数さん2018/04/26(木) 13:27:44.35ID:0o1WRjr2
>>746
式の入力ミスってね?
正しい式でも自己交差はあるが

751132人目の素数さん2018/04/26(木) 13:33:29.81ID:erWHa7/x
>>750
ミスってたorz
https://www.wolframalpha.com/input/?i=parametric+plot+((cos+t)*(1-(cos+t)),(+sin+t)*((sin+t)%2B(cos+t)))

752132人目の素数さん2018/04/26(木) 13:54:13.86ID:JBKCy93h
>>737 >>738 >>741

P(0) = P(π) = (0,4)
P(α) = P(β) = (√2,6-2√2)

sinα = {1+√(√2 -1)} /2 = 0.821797126452791
sinβ = {1-√(√2 -1)} /2 = 0.178202873547209

cosα = {(1-√2) +√(1+√2)} /2 = 0.5697802058284711
cosβ = {(1-√2) -√(1+√2)} /2 = -0.983993768201566

cos(2α) = sin(2β) = 1 -1/√2 -√(√2 -1) = -0.35070103409213
sin(2α) = cos(2β) = 1 -1/√2 +√(√2 -1) = 0.936487474717190

α + β = (5/4)π

753132人目の素数さん2018/04/26(木) 14:04:26.39ID:JBKCy93h
>>741 >>752

ついでに
α + β = (5/4)π,
sinα + sinβ = 1,
cosα + cosβ = 1 - √2,

754132人目の素数さん2018/04/26(木) 14:13:53.53ID:HFSUx/mM
>>748
言ってることが曖昧なので他人には理解できない。一人で頑張れ

755132人目の素数さん2018/04/26(木) 18:42:00.86ID:tDWfzCNT
tが全実数を動くとき、曲線
x=t
y=(t+1)|sint|
xy平面にを図示せよ。

756132人目の素数さん2018/04/26(木) 19:10:19.00ID:kvFIsPTg
>>755
つまんねー

757132人目の素数さん2018/04/26(木) 20:55:56.24ID:UQwdyQhw
次元は実数で定義されますが、複素数に拡張するとどんな世界が広がっていますか

758132人目の素数さん2018/04/26(木) 22:27:56.61ID:2DWvDK38
lim[n→∞] f(n)=lのとき
無限級数Σn^(-f(n))が1<lなら収束、1>lなら発散することを示して下さい

759132人目の素数さん2018/04/26(木) 23:56:10.76ID:t+k3+Hbg
>>757
実数状で定義されると言いたい?
VがCベクトル空間なら
dim_CV=2dim_RV

760132人目の素数さん2018/04/26(木) 23:56:25.32ID:t+k3+Hbg
逆だ

761132人目の素数さん2018/04/26(木) 23:59:07.37ID:RrDAN1jz
絶対無限と無始無終はどっちの方が凄いですか?

762132人目の素数さん2018/04/26(木) 23:59:33.75ID:W0I6/bYY
神の方がすごいですね

763132人目の素数さん2018/04/26(木) 23:59:45.31ID:t+k3+Hbg
>>758
Σn^(-l)<∞ (1<l)なので自明

764132人目の素数さん2018/04/27(金) 00:04:03.59ID:B1ZoZY0R
>>762
神と無はどっちの方が凄いですか?

765132人目の素数さん2018/04/27(金) 00:06:31.31ID:YjW1V875
神ですね

766132人目の素数さん2018/04/27(金) 00:15:40.49ID:Nka2DHK9
>>755
y=|sinx| (x≧-1), y=-|sinx| (x<-1)のグラフを書いて、極値がy=x+1上に来るように伸縮させる

767132人目の素数さん2018/04/27(金) 00:21:40.20ID:B1ZoZY0R
>>765
なぜですか?

768132人目の素数さん2018/04/27(金) 00:27:29.18ID:ZQ3nJg4u
>>763
自明じゃないゾ

769132人目の素数さん2018/04/27(金) 00:27:33.56ID:e9YHtb7S
円K:x^2+y^2=1と、Kに内接する正三角形ABCがある。A(0,1)であり、BCはx軸に平行である。
Kの弧BCのうち点Aを含む方を動く動点Pがあり、Pは点Bと点Cには到達しないものとする。以下の問いに答えよ。
(1)△PBCの垂心をHとする。Hが△PBCの内部にあるようなP(x,y)について、xの範囲を求めよ。
(2)∠PBCが90°に限りなく近づくとき、△PBCの垂心Hはどの点に近づくか。
(3)Hの軌跡を求めよ。

垂心Hの座標が立式できません。平面図形を使ったうまい方法はないでしょうか。ご教授願います。

770132人目の素数さん2018/04/27(金) 00:44:12.11ID:k8LM6ual
>>759
ぎゃーワケわからん
現象論的に説明するとどうなの?
物理でそういう次元を持つ図形を考えることってあるかね

771132人目の素数さん2018/04/27(金) 00:45:23.15ID:uigOlPVs
>>769
ABCPHのOを始点とする位置ベクトルをabcphとして
h=b+c+p
だからhはB,Cを通り中心がx軸上で半径1の円でK以外の円(の一部)
だから答えはKを直線BCで反転させた円上の劣弧BCですな。

772132人目の素数さん2018/04/27(金) 01:01:46.49ID:uigOlPVs
>>771
訂正
Pの奇跡が劣弧ならHの軌跡は優弧、Pの奇跡が優弧ならHの軌跡は劣弧です。

773132人目の素数さん2018/04/27(金) 01:04:25.64ID:uigOlPVs
>>771>>772
訂正せんでよかった△ABCは正三角形だからPの軌跡が優弧でHの軌跡が劣弧でOK.

774132人目の素数さん2018/04/27(金) 01:52:20.63ID:yirNj8NA
>>769
平面図形を使ってということなので…

(1)
垂心が三角形の内部にあるのは、三角形が鋭角三角形のときなので、
∠PBC<90°、∠PCB<90°より
-√3/2<x<√3/2
(∠BPCは常に60°なので、考慮する必要なし)

(2)
∠PBC=90°となるとき、垂心はBと一致するので、∠PBCが90°に限りなく近づくときHはBに限りなく近づく。

(3)
∠HBC=∠HPC、∠HCB=∠HPBより、
∠HBC+∠HCB=∠HPC+∠HPB=60°
∴ ∠BHC=120°
よって、D(0,-1)として、Hの軌跡はDを中心とする半径1の円周の、直線BCから見てAと同じ側にある弧BC(ただし、両端を除く)


(3)についてもっと詳しく言うなら、原点をOとして、∠BOC=∠BHCより、Hは△OBCの外接円上の、BCから見てOと同じ側にある、ということ。

775132人目の素数さん2018/04/27(金) 10:26:00.07ID:V63KSR+P
bベクトルのaベクトル方向の成分を求めよ

776132人目の素数さん2018/04/27(金) 12:37:45.36ID:Rlet1xcf
|b↑|cosθ=(a↑・b↑)/|a↑|

777132人目の素数さん2018/04/28(土) 00:12:30.26ID:EUCYldpj
>>768
自明だよ

778132人目の素数さん2018/04/28(土) 05:05:46.55ID:9n4TGZCF
p_nは分母がn桁の整数であるような既約分数のうち、a_n=|√2-(p_n)|を最小にするものである。
a_nを10進法表示したとき、小数点第一位以下に並ぶ0の個数をb_nとおく。b_nとnの大小を比較せよ。

779132人目の素数さん2018/04/28(土) 06:34:37.09ID:DV0nooA0
>>778
nは1以上の整数とする。
q_nを10^n以下の最大の素数とすると、10^n/2 < q_n < 10^nであり、q_nはn桁の整数。
r_nは、分母がq_nの分数のうち、c_n = |√2 - q_n|を最小にするものとすると、
明らかに0 < c_n < 1/(2q_n)であり、r_nは1や2ではないので、r_nは分母がq_nの既約分数。
よって、p_nの定義より0 < a_n ≦ c_nとなり、
1/(2q_n) < 1/(10^n)より、0 < a_n < 1/(10^n)
∴ b_n ≧ n

なお、n=1の時を調べるとb_1=1となるので、b_n > nとは言えない。
p_1=7/5,a_1=0.01421…

780132人目の素数さん2018/04/28(土) 08:41:20.94ID:yUcCs7tI
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

小3の娘のテストで「三角形は何個ありますか?」という問題です。
図に関して、他に注釈はありませんでした。
娘は9と答え間違えになりました。

娘が言うには、
「だって、三角形って3点と3つの線分やろ?
 4つが繋がって出来たヤツは線の真ん中に点があるし、その点に繋がってる線分は直線(180度)とは限らないやん?
 だから、繋がってるヤツはあえて外したのに、、、」と。

それを先生に言ったけど、適当にあしらわられたそうです。

娘の言うことも尤もだと思うので、納得のいく説明をしてあげたいのですが、うまく教えれません。
何かいい説明はありますでしょうか。

781132人目の素数さん2018/04/28(土) 08:47:02.70ID:xfaXM98Q
三菱のマークじゃん。

782132人目の素数さん2018/04/28(土) 08:51:22.94ID:trnscwsy
>>780
画像をみると、どうみても辺がギザギザしてて直線ではないですから、三角形の個数は0個ですね

783132人目の素数さん2018/04/28(土) 09:41:13.61ID:CekgBcK5
>>780
でかい三角形の真ん中に逆さの三角形書いたらもとの三角形は三角形じゃなくなるってこと?て聞いてみ

784132人目の素数さん2018/04/28(土) 10:31:51.32ID:KXIP0ebi
xsin(1/x)は1≦xのとき単調増加であることを示せ

変数をひっくり返した(逆数)ものは0<x≦1で単調減少であることが分かるので、元の関数は1≦xで単調増加
これより簡潔な(エレガントな)解は流石にない、かな?

785132人目の素数さん2018/04/28(土) 10:49:47.46ID:9n4TGZCF
四面体PABCの辺PA,PB,PC上にそれぞれ点D,E,Fをとり、△ABC=2△DEFであるようにする。
このとき、体積の比(四面体ADEF)/(四面体PABC)の最大値を求めよ。

786132人目の素数さん2018/04/28(土) 12:54:23.15ID:NSsCwu5z
>>780
出題者の望む答を求めてるんだから正しい答を言っちゃダメって教えとけ

787132人目の素数さん2018/04/28(土) 13:21:10.45ID:vfrjd2aY
マップが4倍になったときに数値変更し忘れたことによる初心者かよと唾棄したくなるような守城兵器バグも直せよ!

788132人目の素数さん2018/04/28(土) 13:21:27.16ID:vfrjd2aY
もろ誤爆

789132人目の素数さん2018/04/28(土) 13:41:11.02ID:DV0nooA0
>>780
娘さんが引っかかってるポイントがもしかしたら複数あるかもしれないですが、

1.線の途中に点があっても、2つの線分が繋がっているのではなく、
 もともと長い線分があってその途中に点を取ったと考えればよいので、
 ぱっと見で直線になるように書いてあれば説明がなくても直線のつもりで
 先生は書いたのだと思っていいこと

2.大きい三角形の各辺上に2点ずつを取ってそれを結んだ時、真ん中で
 3つの線がちゃんと1点で交わるかどうかわからないということを
 心配しているかもしれないが、各辺上の2点を、辺を三等分するようにとれば、
 必ず1点で交わるから、図には何もごまかしはないこと

3.その図を、9つの小さい三角形を辺で繋いだものだと理解したとしても、
 その9つの三角形が同じ形(そのうち3つは180°回転したもの)であれば、
 三角形の内角の和が180°であることから、線分が繋がって長い線分に
 見えるところは本当に長い線分になっていて、4つ繋がったものや
 9つ繋がったものもちゃんと三角形になること

以上を説明して(特に2や3のからくりを納得させて)
他の子たちが気にしなかったポイントに気づいたことをしっかり褒めてあげましょう。
その上で、今回は2や3の状況を理解させるところが問題の趣旨ではなく、
そこを詳しく説明するとかえって子供たちが混乱するので、先生としては
1のようにぱっと見を信用して大きい三角形も含めて数えて欲しかったのだという
少々大人の事情の部分も理解させましょう。

790132人目の素数さん2018/04/28(土) 15:35:50.44ID:chQU1qWC
問題は必要十分だからn=3k−1で成り立たないことも示さなきゃならんのよな
もっと上手い解き方はありますか?

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

791132人目の素数さん2018/04/28(土) 15:38:06.68ID:Nqe5wFYR
鋭角三角形OABについて
OA=a OB=b OC=c とした時
内積 →(OA)・→(OB)を
a,b,cを用いて表せ

という問題で答えが
(a^2+b^2-c^2)/2
になるらしいのだが
この解に至るまでの過程を教えてほしい

792132人目の素数さん2018/04/28(土) 15:43:40.70ID:weWrnK/L
>>791
余弦定理

793132人目の素数さん2018/04/28(土) 16:04:49.27ID:Nqe5wFYR
>>792
そういう事か
やっと意味が分った
3Q

794132人目の素数さん2018/04/28(土) 17:13:09.82ID:c5Pu4FxI
>>791
なるわけない。

795132人目の素数さん2018/04/28(土) 20:48:15.93ID:juhzl8tT
なるだろ

796132人目の素数さん2018/04/28(土) 20:49:47.55ID:c5Pu4FxI
cに関係ないのにcが出るわけない。

797132人目の素数さん2018/04/28(土) 20:49:53.81ID:weWrnK/L
OC=c ならならんな
AB=c だろうけど

798132人目の素数さん2018/04/28(土) 20:51:33.62ID:juhzl8tT
OCじゃなくてAB=cだ
こりゃ

799132人目の素数さん2018/04/28(土) 20:52:10.34ID:eLCjDGoS
展開の問題で、x=-3 y=1/3とする

(x-2y)(x-y)-2y^2

受験生なのですが、この問題が解けません。
お願いします。
そして、展開の式での符号のつけ方がよくわかりません。
(x-a)^2=x^2 -2(-a×-a)x +a^2
なのでしょうか。それとも、-2(a×a)なのでしょうか?
教えてください。

800132人目の素数さん2018/04/28(土) 20:52:26.40ID:juhzl8tT
OCじゃなくてABだ こりゃ

801132人目の素数さん2018/04/28(土) 21:11:20.16ID:ksVVKyip
>>799
-2(-a×-a)xでも-2(a×a)xでもないね
+((-a)+(-a))xまたは−(a+a)xなので−2axになる

802132人目の素数さん2018/04/29(日) 00:19:19.49ID:nUaIAQG3
n * (n-1) * … * (n-(m-1)) = n! / (n-m)!
この式変換の方法を教えてください

803132人目の素数さん2018/04/29(日) 00:21:54.44ID:35gkRwm3
>>802
> n * (n-1) * … * (n-(m-1))
分母と分子にm!かけてみろ

804 【だん吉】 2018/04/29(日) 00:25:35.75ID:0qh60/ik
>>799
まずは展開。
(x-2y)(x-y)-2y^2
=x^2-2xy-xy+2y^2-2y^2
=x^2-3xy
x=-3 y=1/3を代入。
与式=(-3)^2-3(-3)(1/3)
  =9+3
  =12

805132人目の素数さん2018/04/29(日) 03:37:25.24ID:us7WqjTP
>>803
(n-m)!ちゃうの?

806132人目の素数さん2018/04/29(日) 09:35:30.70ID:P54hBDVH
>>805
ボケてたわ。(n-m)!やね

807132人目の素数さん2018/04/29(日) 11:49:46.79ID:OSx9h7zw
>>790
もっといいやり方って解答ないやん。なにを基準にもっといいやり方なんだか。
ブルーバックスにこんなん思いつくかボケって解答がのってたな。
入試数学伝説の良問100―良い問題で良い解法を学ぶ (ブルーバックス)
泥臭く帰納法でもとけるけど。

808132人目の素数さん2018/04/29(日) 12:32:01.75ID:QmDQM2Vd
>>807
どんな解答だった?

809132人目の素数さん2018/04/29(日) 12:46:27.12ID:OSx9h7zw
今手元にないからはっきりは思い出せないけどグラフに対して行列を対応させて操作に対して不変である事を示す的な

810132人目の素数さん2018/04/29(日) 12:51:13.22ID:E36Y2YPd
>>801さん >>804さん
解答ありがとうございます。
自分の数学の教師の教え方が雑で、よくわからなかったのですが、しっかりと理解できました!
ありがとうございます。

811132人目の素数さん2018/04/29(日) 13:02:42.75ID:QmDQM2Vd
>>809
ああじゃあ解答の内容は再現できないのね...

812132人目の素数さん2018/04/29(日) 13:46:19.62ID:6AqtfBDM
問5を教えてください
axとxaはそれぞれ計算はしてみたのです
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

813132人目の素数さん2018/04/29(日) 13:52:17.40ID:P54hBDVH
>>812
んじゃあとは等式にするだけじゃね

814132人目の素数さん2018/04/29(日) 15:43:34.54ID:MGQXqy6X
アレクサンドリアのディオファントスとオリゲネスはどっちの方が賢いですか?

815132人目の素数さん2018/04/29(日) 16:00:35.96ID:5GjH3jyk
>>814
窓から見える北アルプスは雪深い?

816132人目の素数さん2018/04/29(日) 16:07:25.72ID:4zeNF/cM
マスターデーモンの問題を貼り付けるアホが定期的に現れたから解答書き起こしたことあるけど

>>790の東大後期の解答も書き起こしておいたほうがいいかもね

817132人目の素数さん2018/04/29(日) 16:09:05.52ID:fB49rskF
窓から見える隣家のブスは毛深い

818132人目の素数さん2018/04/29(日) 16:58:19.49ID:QvYyJptG
東大後期よりも遥かに難しい問題です

n個の赤球とk個の青球を左から右へ一列に並べ、それをK0とする。
この列の、同じ色の球が連続して2個以上並んでいるすべての部分に対して、同時に以下の操作(A)を行う。
(A)各部分のすべての球を取り除き、そこに赤球1個と青球1個を左から入れる。
この操作を1回行って得られる球の列をK1とする。以下同様にK2,K3,...と行い、操作(A)を行える部分がなくなったら終了する。
赤球と青球を無作為に並べてK0を作るとき、終了するまでに(A)を行う回数の平均をnとkで表わせ。

819132人目の素数さん2018/04/29(日) 17:05:35.35ID:6AqtfBDM
>>813
計算が間違っているのか…何かうまく結べないんですよね

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

820イナ ◆/7jUdUKiSM 2018/04/29(日) 17:39:43.52ID:0qh60/ik
>>814まろにえのなみきがまどべにみえてた?
>>804
/ ̄ ̄ ̄ ̄ ̄ ̄ ̄/\
[ ̄ ̄∩∩ ∩∩ ̄\/|
[_((-_-)-_-)) / |
 ̄|`(っu~)U⌒U、/| |
]| ‖υυ~UU~‖ |/|
_| ‖ □ □ ‖ / |
 ̄|`‖____‖/| |
]| ‖ ̄ ̄ ̄ ̄‖ |/|
_| ‖ □ □ ‖ / |
 ̄|`‖____‖/| |
]| ‖ ̄ ̄ ̄ ̄‖ |/ 
_| ‖ □ □ ‖ / 
 ̄\‖____‖/  /
_________/|
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ □ ‖ |
________‖/|
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ □,彡ミ、|
_______川`,`;,
________U⌒U、;
/_/_/_/_/_;~U U~/_/_/_/_○_/_/_/_/_/_/_/_/_/_

821132人目の素数さん2018/04/29(日) 18:26:15.58ID:eN6yarT7
>>819
答え出てるじゃん
a=d,b任意,c=0

822132人目の素数さん2018/04/29(日) 20:49:45.39ID:TGEMDWFm
・座標平面上の2つの放物線
C:y=3x^2-2 , D:y=kx^2 ( k>0 ) が異なる2点で交わっている

⑴kの値を取りうる範囲は ア< k < イ である。

⑵2つの交点のうち x座標が正である点をAとすると k=1のときの点Aにおける放物線Cの接線Lの方程式は y=ウx-エ である。

⑶ 放物線Cと接線Lと y軸で囲まれた図形の面積は S=オ である。

微積を使うのでしょうか? よろしくお願いします。

823132人目の素数さん2018/04/29(日) 20:52:16.76ID:QvYyJptG
>>822
ご質問は、微積を使うのでしょうかということですね。わかりました。

お答えいたします。微積を使います。

824132人目の素数さん2018/04/29(日) 20:56:56.93ID:LoJe3/Mz
大学の課題で「複素数がなかったらこの世に存在しなかったものは何か」っていう課題でたんだけどなんかある?

825132人目の素数さん2018/04/29(日) 21:01:17.06ID:gbW3SPPi
複素関数論ですね

826132人目の素数さん2018/04/29(日) 21:03:11.45ID:jQcIcm8G
物理板で聞いた方がいいと思う

827132人目の素数さん2018/04/29(日) 21:13:35.73ID:8y6oVV1v
>>818
これ問題として成立してる?
赤青青
の状態になったら
赤青青⇒赤赤青⇒赤青青⇒赤赤青⇒……
で永遠に終わらんのじゃないの?

828132人目の素数さん2018/04/29(日) 21:21:37.12ID:l2DmJY+I
霊能者と数学者はどっちの方が凄いですか?

829132人目の素数さん2018/04/29(日) 21:28:20.44ID:LoJe3/Mz
>>825 >>826 サンクス
連投ごめん、じゃあ「複素数の代わりに利用できる数とか計算」ってある?

830132人目の素数さん2018/04/29(日) 21:34:11.09ID:ouu7PUDE
>>818
無意味

831132人目の素数さん2018/04/29(日) 21:35:16.23ID:ouu7PUDE
>>819
は?

832132人目の素数さん2018/04/29(日) 22:56:25.25ID:v8BXidhc
複素数がない
→Cがない
→代数閉包の存在が一般に言えない

833132人目の素数さん2018/04/30(月) 00:10:11.97ID:bBXDO0H4
>>829
四元数

834132人目の素数さん2018/04/30(月) 00:11:48.97ID:j84ET+Wv
複素数がなかったら、四元数もベクトルもなかったかもしれん

835132人目の素数さん2018/04/30(月) 00:25:51.35ID:YkZppX/u
実数の組(x,y)に上手く演算を入れて複素数体Cと同型になるように出来る。
R[x]/(x^2+1) を考えてもよくて、これもCと同型になる。
複素数がなくても、これらの体系を使えば実質的には複素数が使えていることになって、
この世から失われるものは何も無い。ただし、「複素数がなかったら」という質問の意図は

「複素数体Cと同型になるような体系は(結局複素数なので)軒並み禁止」

という意味であるとも考えられる。この場合、Cと同型になるような操作とは
どのようなものなのか境界があいまいなので、質問自体に不備がある。
たとえば、実部と虚部をそれぞれ実数の範囲だけで計算することで、
「表面的には実数の範囲でしか計算してないけど、その実態はCと同じことをしている」
といった芸当が可能である。というわけで、根本的には、この質問自体がくだらないように見える。
複素数が無いことで明確に失われるものと言えば、

「複素数にマッチした対象は複素数で記述してこそスッキリするのに、
 そういうものを複素数を使わずに表現すると複雑怪奇な文章になる」

という、可読性に関するものだけではないか。

836132人目の素数さん2018/04/30(月) 00:38:04.43ID:bmMTIh7I
行列

837132人目の素数さん2018/04/30(月) 00:49:12.70ID:iiZ/CJ+E
>>833

四元数でおき替えてしまうと乗法が非可換になるので大損害ですなぁ。
行列っぽいイメージになる。
じっさい i,j,k はパウリのスピン行列と対応がある。

838 【豚】 2018/04/30(月) 00:55:44.38ID:KlDd4mbc
>>822
3x^2-2=kx^2 (k>0)――@
(3-k)x^2-2=0
判別式D=-4(3-k)(-2)>0
3-k>0
kの値を取りうる範囲は
0<k<3

2つの交点のうち x座標が正である点をAとすると
k=1のとき@より2x^2=2
x=1(x>0)
点A(1,1)における放物線y=3x^2-2の接線Lの方程式はy=3x^2-2を微分すると、
y'=3x
点A(1,1)を通り、傾き3の直線はy=3x-2

放物線Cと接線Lと y軸で囲まれた図形の面積は
S=∫0~1{(3x^2-2)-(6x-5)}dx
=∫0~1(3x^2-6x+3)dx
=[x^3-3x^2+3x]0~1
=1-3+3
=1

こんな感じだった? (三十年ほど前の青チャートの記憶)前>>820

839 【凶】 2018/04/30(月) 00:58:58.81ID:KlDd4mbc
>>822>>838修正。
3x^2-2=kx^2 (k>0)――@
(3-k)x^2-2=0
判別式D=-4(3-k)(-2)>0
3-k>0
kの値を取りうる範囲は
0<k<3

2つの交点のうち x座標が正である点をAとすると
k=1のとき@より2x^2=2
x=1(x>0)
点A(1,1)における放物線y=3x^2-2の接線Lの方程式はy=3x^2-2を微分すると、
y'=6x
点A(1,1)を通り、傾き3の直線はy=6x-5

放物線Cと接線Lと y軸で囲まれた図形の面積は
S=∫0~1{(3x^2-2)-(6x-5)}dx
=∫0~1(3x^2-6x+3)dx
=[x^3-3x^2+3x]0~1
=1-3+3
=1

840132人目の素数さん2018/04/30(月) 01:11:00.33ID:jdS/QvU7
これ算数/中学数学で簡単にエレガントに解けますか?
もしそうなら教えてください
余弦定理を2回用いて導きましたが、幾何的に簡単に解けるのかなあと思い質問しました

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

841132人目の素数さん2018/04/30(月) 01:19:40.38ID:bmMTIh7I
ケーーリーー数

842132人目の素数さん2018/04/30(月) 01:25:36.00ID:j84ET+Wv
虚数行列というのもあるけど
商の定義と積が可換であることが見えにくくなる

843132人目の素数さん2018/04/30(月) 02:54:02.24ID:Sk9cziYy
>>829
それこそ行列演算でしょう
iの変わりに図の行列を考えればだいたい同じ
量子力学を複素数の世界で捉えたシュレーディンガー方程式も結果的には同じだと聞くし
計算のやりやすさが違ってくるかもしれんが

844132人目の素数さん2018/04/30(月) 02:54:46.93ID:yDohsidl
>>840
Pを通る辺ABの垂線と、
Rを通る辺ACの垂線との交点をTとし、Tから正方形の各頂点へ補助線を引きます。
また、PからAに向かって距離6cmの点をP'、RからAに向かって距離2cmの点をRとし、補助線P'R'を引きます。この補助線は頂点Sを通ります。
これらの補助線によって、三角形ABCは、4対の合同な三角形の組と、三角形AP'R'に分割されます。
これによって、四角形P'BCR'の面積が正方形の2倍、かつ三角形ABCの136/143倍、また、四角形APTRの面積が30cm2ということがわかります。
この四角形APTRの面積は三角形ABCと正方形の面積の差に等しくなります。
これらから式をたてて面積を求めると正方形の面積は(136/5)cm2となります。

845132人目の素数さん2018/04/30(月) 03:14:13.79ID:jdS/QvU7
>>844
こちらの方が簡単
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

846132人目の素数さん2018/04/30(月) 03:15:11.15ID:jdS/QvU7
ですか?
それともあなたの方が簡単でしょうか?
正直よくわかりません...

847イナ ◆/7jUdUKiSM 2018/04/30(月) 03:55:00.50ID:KlDd4mbc
>>840>>839
AP上にAT:TP=1:6となるTをとる。
AR上にAU:UR=7:2となるUをとる。
正方形PQRS=(1/2)(△ABC−△ATU)
=(1/2){(13・11/7)−1}△ATU (=)88/7 A△TU△=()8//7(/117△APR
=(68/7)(1/7)3√7(^2−3^2
=(68/7993√(0
=3(08849))100

848イナ ◆/7jUdUKiSM 2018/04/30(月) 04:00:34.06ID:KlDd4mbc
>>840>>847途中から数字か化けてる。訂正。
AP上にAT:TP=1:6となるTをとる。
AR上にAU:UR=7:2となるUをとる。
正方形PQRS=(1/2)(△ABC−△ATU)
=(1/2){(13・11/7)−1}△ATU
=(68/7) △ATU
=(68/7)(1/7)△APR
=(68/7)(1/7)3√(7^2−3^2)
=(68/49)3√40
=(408/49)√10


再度答えを打つ!
(408/49)√10

849132人目の素数さん2018/04/30(月) 04:03:56.10ID:yDohsidl
>>846
やり方はひとつでなくていいと思います

こちらの発想は、
まず、三角形ABCのうち、正方形に含まれない部分の面積を求めようとしたところからスタートしています。
下の三角形PBQとRCQを、それぞれ90°回転させて正方形の中に納めてみたところ、うまく四角形(APTR)ができました
その四角形を対角線ATで分割したら直角三角形が2つできたので、面積が30cm2と求められ、正方形の面積+30cm2=三角形ABCの面積とわかりました。
この事実ををうまく活用できないかと考えて補助線を引いていった次第です。

850132人目の素数さん2018/04/30(月) 04:16:22.39ID:yDohsidl
>>849
>下の三角形PBQとRCQを、それぞれ90°回転させて正方形の中に納めてみたところ、
ここのところ、
三角形PBQを、頂点Pを固定したまま頂点Qが頂点Sと重なるまで回転させる
同様にRCQを、頂点Rを固定したまま頂点Qが頂点Sと重なるまで回転させる
こうすると、元の2つの三角形の辺BQと辺CQはぴったり重なり、凹四角形APSRと合わせてひとつの凸四角形APTRになります。

851イナ ◆/7jUdUKiSM 2018/04/30(月) 04:23:02.56ID:KlDd4mbc
>>840>>848やり方は一つみつければいい。考えたら負け。
AP上にAT:TP=1:6となるTをとる。
AR上にAU:UR=7:2となるUをとる。
正方形PQRS=(1/2)(△ABC−△ATU)
=(1/2){(13・11/7)−1}△ATU
=(68/7) △ATU
=(68/7)(1/7)△APR
=(68/7)(1/7)3√(7^2−3^2)
=(68/49)3√40
=(408/49)√10
≒26.330……
一辺5cm強
(答え)(408/49)√10cu

852132人目の素数さん2018/04/30(月) 04:39:01.72ID:yDohsidl
>>851
それはそうと、なぜ△APR=3√(7^2−3^2) になるのでしょう?

853132人目の素数さん2018/04/30(月) 04:42:40.89ID:Ofd3iELt
xy平面上の曲線
y=k(x-x^3)
x=k(y-y^3)
が第一象限でα≠βを満たす共有点(α,β)を持つような実数kの値の範囲を求めよ。

854132人目の素数さん2018/04/30(月) 08:47:47.90ID:iiZ/CJ+E
>>841

ケーリー数(八元数)は非可換のうえ結合法則も成り立たぬが、ノルムは乗法的である。(ノルム多元体)

16元数以上になると、ノルムが乗法的でもない。(零因子が存在)

城山三郎 「粗にして野だが卑ではない−石田禮助の生涯」 文春文庫 (1992) 254p.551円

855132人目の素数さん2018/04/30(月) 08:57:09.67ID:bmMTIh7I
ケーリーさんが、行列を発明したんだっけな。
 でも、ケーリー数は行列表現ができないんだな

856132人目の素数さん2018/04/30(月) 09:09:22.54ID:iiZ/CJ+E
>>855

行列で表現できる ⇒ 結合則が成り立つ

結合則が成り立たぬ ⇒ 行列で表現できぬ

857132人目の素数さん2018/04/30(月) 09:19:33.72ID:XvO9KcLS
この問題(1枚目)に対して次(2枚目)のように回答したのですが、解はこれで全部でしょうか
画像見辛くてすみません

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

858132人目の素数さん2018/04/30(月) 09:20:18.03ID:XvO9KcLS
この問題(1枚目)に対して次(2枚目)のように回答したのですが、解はこれで全部でしょうか
画像見辛くてすみません

分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

859132人目の素数さん2018/04/30(月) 09:21:56.97ID:XvO9KcLS
連投失礼しましたm(_ _)m

860132人目の素数さん2018/04/30(月) 09:27:53.26ID:hXF0RRRa
(ボケに反応しろってことか?)

861132人目の素数さん2018/04/30(月) 09:38:07.71ID:19nDLWrZ
昔はベクトル解析は4元数でやってたらしいけど、今はCGとかで使われてる

862132人目の素数さん2018/04/30(月) 09:40:15.72ID:RyYfD7tl
50人いて同じ誕生日の人が居る確率ですが、365/1*1/364:1/363……という回答があると
思うのですが、そうではなくて、AさんとBさんが同じ誕生日の確率が1/365、AさんとCさんが
同様に1/365……と考えて、Aさんと同じ誕生日の人が居る確率は (364/365)^50。それを50人
繰りかえすからそれのさらに^50が求める確率であると考えるのは何が間違っているのでしょうか?

8638622018/04/30(月) 09:46:48.74ID:RyYfD7tl
Aさんと違う誕生日の確率は (364/365)^50。
ですね、ごめんなさい

864132人目の素数さん2018/04/30(月) 10:16:26.32ID:lihGKJI8
>>856
>結合則が成り立たぬ ⇒ 行列で表現できぬ
何とか何でね?

865132人目の素数さん2018/04/30(月) 10:19:21.47ID:KzuXsBHY
同型にならないということですからなりませんね

866イナ ◆/7jUdUKiSM 2018/04/30(月) 10:28:41.40ID:KlDd4mbc
>>852△APRの高さを三平方の定理で出します。
>>851
△APR=底辺PR×(1/2)×高さ(AとPRの距離)
=6×(1/2)√{AP^2−(PR/2)^2}
=3√(7^2−3^2)
=3√(49−9)
=3√40
=6√10

867132人目の素数さん2018/04/30(月) 10:35:28.17ID:yDohsidl
>>866
PR=6というのはどこから出しましたか?
というより、PR=6がわかっていたらそこから正方形の面積がすぐ出ますね

868イナ ◆/7jUdUKiSM 2018/04/30(月) 11:12:38.01ID:KlDd4mbc
>>867RじゃなくてUでした。P、Q、R、SがそれぞれTB、BC、CU、UTの中点となるように四角形TBCUを折り紙と見立てて正方形の辺で折り返します。鶴ややっこさんを折るときの感じです。△ATRが半端なわけです。前>>866(UとRが近すぎて読みまちがい)
△APU=底辺PU×(1/2)×高さ(AとPUの距離)
=6×(1/2)√{AP^2−(PU/2)^2}
=3√(7^2−3^2)
=3√(49−9)
=3√40
=6√10

869イナ ◆/7jUdUKiSM 2018/04/30(月) 11:16:51.26ID:KlDd4mbc
>>867訂正します。RじゃなくてUでした。P、Q、R、SがそれぞれTB、BC、CU、UTの中点となるように四角形TBCUを折り紙と見立てて正方形の辺で折り返します。鶴ややっこさんを折るときの感じです。△ATUが半端なわけです。前>>868(UとRが近すぎて読みまちがい)
△APU=底辺PU×(1/2)×高さ(AとPUの距離)
=6×(1/2)√{AP^2−(PU/2)^2}
=3√(7^2−3^2)
=3√(49−9)
=3√40
=6√10

870132人目の素数さん2018/04/30(月) 11:27:11.11ID:BVh40lXu
>>862
あんま理解出来てないけど、問題文的には「50人の中でAさんと同じ誕生日の確率」って訳じゃないんでしょ?
「50人の中で同じ誕生日の確率」って話でしょ?
お前のやり方やと例えばBさんとEさんが誕生日が同じだった場合が抜けないか?

8718622018/04/30(月) 11:37:15.69ID:RyYfD7tl
>>870
ありがとう。
私の疑問って、決まった50人の中から確率を求めるのと、無限の母数の中から毎度
ピックアップした場合の違いだと思うのですが、それだけだとしたら無限の母数の中から
選んだ方が誕生日の重複という意味では低くなると思うのですが、計算結果が逆に
なってしまうことが不思議なのです。

無限の母数の中からひとつピックアップして、同じようにピックアップして連続22回
違う誕生日を引き当てる確率が(364/365)^22=94.1% 。
それを22回試行して、誕生日が同じ人が来ない確率は94.1%^22。=26.5% だから、
同じ誕生日が来る確率は73.5%となって、(1/365*1/364*…..1/343)の50.7%を遙かに
超えてしまうのです。

8728622018/04/30(月) 11:41:26.66ID:RyYfD7tl
しまった。いつのまにか23人で計算していた!

873132人目の素数さん2018/04/30(月) 11:41:46.86ID:yDohsidl
>>869
やっぱりPU=6の理由がわかりません
PBQとPUQは合同にはならないと思うのですが

874132人目の素数さん2018/04/30(月) 12:10:16.72ID:BVh40lXu
>>871
まずなんで22回(50回?)試行したの?
22回連続違う誕生日を引き当てる確率から22条をするってスッゲー意味ないと思うんだけど。
それと(364/365)^22でもそれは最初の人と誕生日が違う確率であって全ての人の誕生日が違う確率にはならない

875イナ ◆/7jUdUKiSM 2018/04/30(月) 12:43:01.98ID:KlDd4mbc
>>873やりなおします。前に折り紙に見立てて解いた記憶がありましたもんで。

>>869
ちょっと今、米を48時間冷水(のちぬるま湯)に浸してしまいまして、炊きあがりがくさいんでヤキメシを考えてます。

876132人目の素数さん2018/04/30(月) 14:12:59.57ID:S+9FRbxC
>>858の書き込みが謎。解はこれで全部か?ってひとつも解書いてないやん。

877132人目の素数さん2018/04/30(月) 14:46:25.80ID:9d8sUybR
解が無いんじゃ?

878132人目の素数さん2018/04/30(月) 14:51:46.78ID:FUt4rQUe
4+2+2+2(+1が22個)
=4×2×2×2(×1が22個)
が唯一の解ですな。

879132人目の素数さん2018/04/30(月) 14:57:14.00ID:Z7DH20BH
かいーの

880132人目の素数さん2018/04/30(月) 15:13:29.08ID:FUt4rQUe
6、6.残り1もあったorz

881132人目の素数さん2018/04/30(月) 15:30:01.93ID:PdEBuERc
(1)
(2)[24],6,6.
(3)
(4)[22],2,2,2,4.

882132人目の素数さん2018/04/30(月) 16:19:57.30ID:9GopzljD
23人いる!

883132人目の素数さん2018/04/30(月) 17:59:25.28ID:qWOBkq7m
次の問題に対する私の答えの間違いを指摘して頂けませんか?
<問題>
n個の箱がある。それぞれの箱には1〜nの番号が振られている。
m個(m<n)のボールを無作為に箱に入れた時、2つ以上のボールが入っている箱が少なくとも1つある確立を求めよ。
ただし、何度でも同じ箱にボールを入れて良い。
<答え>
(まだ一度も衝突が起きていないとき)
1番に箱に入るボールが衝突する確率は0/n
2番に箱に入るボールが衝突する確率は1/n
m番に箱に入るボールが衝突する確率は(m-1)/n
よって衝突が1度でも起きる確率は
(0+1+…+(m-2)+(m-1)) / n = m(m-1)/2n

>>803
>>805
ありがとうございます!

884132人目の素数さん2018/04/30(月) 18:32:00.29ID:yyXv1dUB
王2枚、金4枚、銀4枚、馬4枚、香4枚、角2枚、飛2枚、歩10枚の合計32枚を円に並べて、4人で順番に反時計回りに1枚ずつとっていく。

このとき、

(1)8枚の配牌すべて歩になる確率

(2)そのうち2人が5枚ずつ歩を持っている確率

をそれぞれ求めよ

885132人目の素数さん2018/04/30(月) 18:34:21.39ID:S+9FRbxC
>>883
P(1回目に衝突する)
+P(1回目までは衝突せず2回目に衝突する)
+P(2回目までに衝突せず3回目に衝突する)
+…
としないとダメ

886132人目の素数さん2018/04/30(月) 18:45:43.86ID:IX+cr+ve
数学者と仏教僧はどっちの方が凄いですか?

887132人目の素数さん2018/04/30(月) 19:36:40.15ID:cCkzugiJ
どちらも乞食の凄さには勝てないという意味で、同等です。

888132人目の素数さん2018/04/30(月) 20:30:17.82ID:f2DvPYO1
>>884
(1)P(誰かが歩10枚) = 4×10/32*9/31*…*1/23
(2)P(いずれか2人が歩5枚ずつ) = 6×C[10,5]×C[10.5]×10/32×…×1/23

889132人目の素数さん2018/04/30(月) 20:35:59.55ID:7DW+TaxC
>>886
へへへへへへへへへへへへへへへへへへへへへへへへへへへへへへへへへへへへ

890132人目の素数さん2018/04/30(月) 20:37:16.71ID:lihGKJI8
>>865
だって積を捻って入れたら結合則成り立たないようにもできそうじゃん

891132人目の素数さん2018/04/30(月) 21:09:28.96ID:f2DvPYO1
そもそも>>840の図形ってほんとに存在するの?

892132人目の素数さん2018/04/30(月) 21:22:41.47ID:f2DvPYO1
失礼しました。>>840の図形存在しますね。よくこんな図形見つけて来たなぁ。

893イナ ◆/7jUdUKiSM 2018/04/30(月) 23:13:12.72ID:KlDd4mbc
>>840
P、Q、R、SがそれぞれTB、BC、CU、UTの中点となるように四角形TBCUを折り紙と見立てて正方形の辺で折り返します。TBCUの四つの頂点が、正方形PQRS内の一点Vに集まる。
>>875
PQRS=(1/2)(△ABC−△ATU)
△APR/△ATU=(1/2)AP・ARsinA/(1/2)AT・AUsinA=9
四角形TPRU/△ATU=8

四角形PBCR/△ATU=8

四角形PQRS/△ATU
=(1/2)(四角形TBCU/△ATU)
=(1/2)16
=8
TP=PB=PV=6、UR=RC=RV=2、TS=SU=SV、BQ=QC=QV
SQ=PR=8
∴PQRS=(8^2)/2=32

PQ=QR=RS=SP=4√2
≒5.656854

どうですか?

894132人目の素数さん2018/05/01(火) 01:36:20.51ID:vpUom4ur
>>893
すごいなこれ
書いてみたら本当に一点になった

895イナ ◆/7jUdUKiSM 2018/05/01(火) 02:21:54.39ID:VWn4t1yJ
>>894レスありがとう。
あってるかわからないけどなるべく正確な図を書いて近い数字を探った。

なにやってんだ、って思いつつ気になってまた考えてしまう。なにか美しい解法があるはず、と思って図を書いてしまう。
>>893疲れた。

896132人目の素数さん2018/05/01(火) 02:28:04.57ID:0rV/A0yL
>>893
四角形TPRU=四角形PBCR となってるのは何で?

897132人目の素数さん2018/05/01(火) 03:11:13.88ID:wRLx9VnA
この問題が分かりません

an=(1+1)(1+1/2)(1+1/3)・…・(1+1/2n)
bn=(1+1)(1-1/2)(1+1/3)・…・(1-1/2n)
のとき、n→∞としたときのanとbnの極限を調べよ。

anは無限大だと思うのですが、log取ったりしても今いち分かりません
bnの方は全く分からないです
よろしくおねがいします

898132人目の素数さん2018/05/01(火) 03:23:13.17ID:vpUom4ur
>>897
とりあえず気になったが
{1+1}{1+(1/2)}{1+(1/3)}・……・{1/2n}
てなんかおかしい

899132人目の素数さん2018/05/01(火) 03:35:53.45ID:VOqTPAOS
>>893
ん?結局答え(27.5)とは違うのでは?

900132人目の素数さん2018/05/01(火) 03:50:07.37ID:0rV/A0yL
>>897
anとbnをいちどnの式で表してみるといい

901132人目の素数さん2018/05/01(火) 04:13:02.83ID:1ZqUf7u7
各 ( ) の中を通分してから an, bn を眺めると、
わさわさっと約分できるだろ?

902132人目の素数さん2018/05/01(火) 07:37:12.40ID:CMEnVjt6
なんでもなーみん

903132人目の素数さん2018/05/01(火) 07:49:53.71ID:nlDGsJhz
a_n=Π[k=1,2n](1+1/k)=Π[k=1,2n](k+1)/k=2n+1
lim[n→∞]a_n=∞
b_n=Π[k=1,2n](1+((-1)^(k-1))/k)=Π[k=1,2n](k+((-1)^(k-1)))/k=(Π[l=1,2n]l)/(Π[m=1,2n]m)=1
lim[n→∞]b_n=1

904132人目の素数さん2018/05/01(火) 10:47:57.05ID:iljAsWGl
>>899
>ん?結局答え(27.5)とは違うのでは?

答えは、27.2だろ。136/5 = 27.5? 最後にボケてる。

905イナ ◆/7jUdUKiSM 2018/05/01(火) 11:25:21.41ID:VWn4t1yJ
>>893TUとBCが同じに見えました。訂正します。
P、Q、R、SがそれぞれTB、BC、CU、UTの中点となるように四角形TBCUを折り紙と見立てて正方形の辺で折り返します。TBCUの四つの頂点が、正方形PQRS内の一点Vに集まる。
TP=PB=PV=6
BQ=QC=QV
UR=RC=RV=2
TS=SU=SV
>>896
PQRS=(1/2)(△ABC−△ATU)
△APR/△ATU=(1/2)AP・ARsinA/(1/2)AT・AUsinA=9
四角形TPRU/△ATU=8
△ABC/△ATU=13・11/7
=143/7
四角形PBCR/△ATU=(143/7)−9
=80/7
四角形PQRS/△ATU
=(1/2)(四角形TBCU/△ATU)
=(1/2)(8+80/7)
=(1/2)(136/7)
=68/7
△ATU=(1/2)1・7sinA
=(7/2)sinA
PQRS=(68/7)(7/2)sinA
=34sinA
(つづく)
△ATU=(7/2)sinA=2
と予想する。
PQRS=136/7
≒19.428571

906132人目の素数さん2018/05/01(火) 12:14:24.91ID:GJ4DaLdR
>>881

(2) [24], 6, 6.
(2) [24], 2, 26.
(3) [23], 2, 2, 9.
(4) [22], 2, 2, 2, 4.

907132人目の素数さん2018/05/01(火) 12:22:26.03ID:GJ4DaLdR
>>886
どちらも乞食という意味で、同等です。

908132人目の素数さん2018/05/01(火) 12:37:24.91ID:GJ4DaLdR
>>856

可除環上有限次元であるすべての単純環(単純代数)は行列で表現できる。
J.ウェダーバーン(1908)、E.アルティン(1927)

909132人目の素数さん2018/05/01(火) 13:49:37.68ID:MNMEG1rp
y=(100x-x^2)/1000 0≦x≦100
のyの最大値ってどうやって求めたらいいんですか?
解き方と解答教えてください。

910132人目の素数さん2018/05/01(火) 14:04:13.04ID:LsyBkjdI
二次関数の最大値は唯一(エリ、ランダウ スケルトフ研究所紀要 1940 Vol1 p1)

911132人目の素数さん2018/05/01(火) 14:35:13.26ID:QQuzwbBg
y=(-1/1000)(x-50)^2+5/2

912132人目の素数さん2018/05/01(火) 14:36:56.02ID:wRLx9VnA
正七角形Kの外接円の半径が1のとき、Kの内接円の半径rはr>0.87であることを示せ。

913イナ ◆/7jUdUKiSM 2018/05/01(火) 19:29:18.55ID:VWn4t1yJ
>>905前々895前に解いたことがあるような気がする。BCとTUを延長し、交点をWとすると、メネラウスの定理から、TS:SU:UW=10:10:13
BQ:QC:CW=10:10:1
折り返した四点がVに集まるとして、PV=6、RV=2から考えて、RV=5、SV=2.5ぐらいじゃないかと。
対角線が7ぐらいならPQRS=24.5ぐらいもありうる。
/ ̄ ̄ ̄ ̄ ̄ ̄ ̄/\
[ ̄ ̄∩∩ ∩∩ ̄\/|
[_((-_-)-_-)) / |
 ̄|`(っu~)U⌒U、/| |
]| ‖υυ~UU~‖ |/|
_| ‖ □ □ ‖ / |
 ̄|`‖____‖/| |
]| ‖ ̄ ̄ ̄ ̄‖ |/ \
_| ‖ □ □ ‖ /  /
 ̄\‖____‖/  /
_________/|
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ □ ‖ |
________‖/|
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ □ ‖ |
________‖/|
________‖/_/_/_/_/_/_/_/_/_/_/_/_/_○_/_/_/_/_/_/_/_/_/(つづく)

914132人目の素数さん2018/05/01(火) 20:11:20.33ID:iljAsWGl
27.2で正解。

915132人目の素数さん2018/05/01(火) 20:24:03.16ID:19O3juE5
>>909面倒だから係数無視するね
y=(100x-x^2)
dy/dx=100-2x
上に凸の関数だからx=50の時最大値を取る

あとは(100x-x^2)/1000にx=50を代入
(5000-2500)/1000=5/2

916イナ ◆/7jUdUKiSM 2018/05/01(火) 20:39:38.60ID:VWn4t1yJ
TS:SU:UW=10/3:10/3:13/3
BQ:QC:CW=5:5:1/2
この辺り。

>>913一辺5.25なら、
PQRS=27.5625

917132人目の素数さん2018/05/01(火) 20:49:12.10ID:+MWqL2oU
本当にもう嫌だ・・・・・。
無になってもう二度と有になりたくない・・・・・。
自殺しても無駄かな?

918132人目の素数さん2018/05/01(火) 20:50:52.53ID:dP/mac7j
>>840
数学板ってこんなもんなのか?

以下長さ及び面積の単位を省略する
△PBQを点P中心で反時計回りに90°、△QRCを点R中心に時計回りに90°回転させよ
∴△ABC-□PQRS=(7×6+9×2)/2=30を得る
又△PQR:△ABC
=1-{(7/13)(9/11)+(1/2)(6/13)+(1/2)(2/11)}
=34:143
∴□PQRS=30{(143-34)/68}=136/5

919132人目の素数さん2018/05/01(火) 22:17:19.96ID:eX1ZKwz7
こんばんは。先輩方。お力をお貸し下さい。
c1c2=c1+c2より
c2を求めなさい。

方程式が分かりません。優しく分かり易くご教授お願いします。

920132人目の素数さん2018/05/01(火) 22:19:17.36ID:iljAsWGl
神様にもわからない

921132人目の素数さん2018/05/01(火) 22:21:09.25ID:mjhsZSNk
>>919
もうちょい条件が付いてるはずだからそれも書いて。
c1、c2は整数だとかそんな感じのやつ。

922132人目の素数さん2018/05/01(火) 22:25:50.30ID:eX1ZKwz7
919です
コメントありがとうございます。
CはXに変えても大丈夫です。文字です。
お手数ですがよろしくお願いします

923132人目の素数さん2018/05/01(火) 22:37:09.95ID:0rV/A0yL
>>919
c1c2=c1+c2
c1c2-c2=c1
(c1-1)c2=c1
c2=c1/(c1-1) ただし c1≠1

924132人目の素数さん2018/05/01(火) 22:42:37.90ID:eX1ZKwz7
ありがとうございます!!
3行目の-1はどっから出てきたんでしょうか。基本的な事で申し訳ございませを。
連投すいません

925132人目の素数さん2018/05/01(火) 22:54:24.24ID:GJ4DaLdR
>>912
求める半径は r = cos(π/7)

(1)
sin(π/7) < π/7,
r = cos(π/7) > √{1 - (π/7)^2} = √(39) /7 > 6.23 / 7 = 0.89

(2)
sin(π/14) < π/14,
r = cos(π/7) = 1 - 2{sin(π/14)}^2 > 1 - (1/2)(π/7)^2 > 1 - 5/49 = 0.897959

926132人目の素数さん2018/05/01(火) 23:01:38.41ID:Ta+SLkLZ
>>924
「分配則」を教科書で確認せよ。

927132人目の素数さん2018/05/01(火) 23:02:33.28ID:eX1ZKwz7
>>923
ありがとうございました。
トライイットの動画を何度見ても解けず先に進めませんでした。
本当に助かりました。失礼しました。

928132人目の素数さん2018/05/01(火) 23:05:05.85ID:eX1ZKwz7
分配則!確認します!
助かりますっ!

929イナ ◆/7jUdUKiSM 2018/05/01(火) 23:20:50.13ID:VWn4t1yJ
>>918解答ありがとうございます。このままなぞが明かされずに終わるかと思いました。△ABC−PQRS=30と△ABC:PQRS=143:68 を図を書いて確認(sinAは約分)し、自分なりに理解した式を書く。
‖ ̄ ̄‖ ̄ ̄ /■\ ̄/
‖∩∩‖∩∩(´∀∩)┨
( (`)(^o^))つц~丿┃
(っ[ ̄]っц) γ )┃
「 ̄ ̄ ̄ ̄ ̄]`υυ ̄┃
□/_UU__UU□、‖/\┃_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_前>>916
この30cuについて、△ABCからPQRSを除いた部分に対するPQRSの割合をかける。
PQRS=30×PQRS/(△ABC−PQRS)
=30×34×2/(143−34×2)
=30×68/75
=27.2(cu)

930132人目の素数さん2018/05/01(火) 23:27:37.31ID:EVnYFkUc
>>888
(^^;)

931イナ ◆/7jUdUKiSM 2018/05/01(火) 23:31:31.66ID:VWn4t1yJ
>>929
三角形を外側に180°回転したりしてました。

内側に格納して90°を二つも作るとは――。

932132人目の素数さん2018/05/01(火) 23:32:11.59ID:0rV/A0yL
>>924
分配則を使うときに、c2を1×c2と考えるということです。

933132人目の素数さん2018/05/02(水) 01:09:05.51ID:bsa83hlR
台形Tに内接する円Cがある。以下の命題の真偽とその理由を述べよ。
(1)Tの2本の対角線がCの中心を通るならば、Tは正方形である。
(2)Tの対角線のうちただ1つがCの中心を通り、かつ、Tの1つの内角が90°であれば、Tは正方形である。

934132人目の素数さん2018/05/02(水) 01:45:08.95ID:rdE5e+1F
偽、偽じゃね?

935132人目の素数さん2018/05/02(水) 01:46:51.01ID:OMSs1I9c
>>933
(1)偽:正方形でないひし形が反例。
(2)真:前提条件が満たされることはない。

936132人目の素数さん2018/05/02(水) 14:50:27.94ID:bsa83hlR
以下の条件を満たすxy平面上の曲線の例とその式を与えよ。
・0<x<1において常に、半円(x-1)^2+y^2=1(y≥0)と半円(x-1/2)^2+y^2=1/4(y≥0)の間にある
・曲線の全長は無限大である
・(0,0)を通る

937132人目の素数さん2018/05/02(水) 14:56:52.93ID:mXICDzUp
なんか辺aの中点から辺bに平行に辺cに線をひいて同じようにbの中点から…って何回もやるとa+b≒cになるっていう定理を知ってる方、名前を教えてください
この操作で出来る三角形は元の三角形と相似で、対応する辺の長さは半分になっていくのでどんどん小さくなってa+b≒cになっていきます

938132人目の素数さん2018/05/02(水) 19:29:27.97ID:bsa83hlR
空間のxy平面上に円板C:x^2+y^2≦1,z=0がある。
C上に点P(px,py,0)をとり、Pを通るxy平面上の直線lを考え、lとCとの交点をA,Bとおく。また、積PA・PBの値をpzとする。ただしPがCの周上にあるとき、pz=0である。
C上をPが動くとき、円板Cと、点(px,py,pz)全体の作る曲面とにより囲まれる領域の体積を求めよ。

939132人目の素数さん2018/05/02(水) 20:14:12.10ID:xzrfEimU
方べきか

940132人目の素数さん2018/05/02(水) 21:22:34.02ID:8T2p95Px

941132人目の素数さん2018/05/02(水) 23:50:47.59ID:mJGWQQsb
>>936
 小さい半円を y = g(x),大きい半円を y = G(x) として、一価関数
 f(x) = {G(x)+g(x)}/2 + {G(x)-g(x)}/2・sin(π/(1-x))
 x→1 のとき、1往復するごとに約2だけ伸びる

*) g(x) = √{x(1-x)}、h(x) = √{x(2-x)}

942132人目の素数さん2018/05/03(木) 02:58:59.12ID:CZ0Fa01r
>>912

(3)
π/7 < 7π/48 = (π/6 + π/8)/2,

r = cos(π/7) > cos((π/6 + π/8)/2)
 > {cos(π/6) + cos(π/8)} /2  (←上に凸)
 = {√3 + √(2+√2)}/4
 = 0.89495

943132人目の素数さん2018/05/03(木) 11:14:59.05ID:CZ0Fa01r
>>941

G(x) = √{x(2-x)},

>>936
チョト変更
f(x) = √{x [ h(x) - x] },
h(x) = {3 ± sin(π/(1-x))} /2,

944132人目の素数さん2018/05/03(木) 16:58:04.21ID:Zif+1MfY
1000より小さい数のうち、4で割ると3余り、かつ5で割ると4余る数の個数はいくつか。

4と5で割ると-1余ると考え4,5の最小公倍数-1の19がそれに相当すると思い
1000/19で52個だと思ったのですが答えは50らしいです……なぜでしょうか……

945132人目の素数さん2018/05/03(木) 17:07:05.92ID:Edef9/wk
>>944
4で割ると3余りかつ5で割ると4余る数、というのは「20で割ると19余る数」のことであって、19の倍数ではないからです

946132人目の素数さん2018/05/03(木) 17:12:26.03ID:veMXazyU
円周率の最後の数字をxとしてx-1求めれば1足してxが求まりますよね?それでx=3であってますか?

947132人目の素数さん2018/05/03(木) 17:42:16.38ID:YeEZklti
あってる

948132人目の素数さん2018/05/03(木) 17:53:18.17ID:ccGN04/e
ここって数学全く出来ずに浪人してしまったガイジにも優しく教えてくれるん?できれば紙に書いて貼ってほしい。

949132人目の素数さん2018/05/03(木) 18:12:28.86ID:fRFpFC/D
普通に家庭教師雇えばいいじゃん

950132人目の素数さん2018/05/03(木) 18:23:00.69ID:YeEZklti
誤答爺さんが長文の誤答を教えてくれる

951132人目の素数さん2018/05/03(木) 18:34:52.89ID:ccGN04/e
>>949
金が無いんだよ

952132人目の素数さん2018/05/04(金) 00:19:11.41ID:35MdHy9b
>>912

(4)
cosθ = x とすると、
cos(4θ) + cos(3θ)
= (8x^4 -8x^2 +1) + (4x^3 -3x)
= (x+1)(8x^3 -4x^2 -4x +1)
= (x+1) f(x)

f '(x) = 4(6x^2 -2x -1)
 x = (1-√7)/6 に極大値 (7/27)(1+2√7)
 x = (1+√7)/6 に極小値 (7/27)(1-2√7) があり、それより右では単調増加
 f(0.9) = -0.008 < 0 = f(cos(π/7)) = f(r),
∴ 0.9 < r

953132人目の素数さん2018/05/04(金) 05:16:34.51ID:tv4CnDjS
素数の間隔に最大値が無いとのことですが、では、素数Aと次の素数Bの間隔が素数Aの数以上になる素数の組み合わせは存在しえますか?
それを証明する定理みたいなものや計算方法、未解決問題的なものはありますか?

すんごく大雑把な感覚だと存在しないように思うのですが
そんなことを考えた人が居たりしますか?

954132人目の素数さん2018/05/04(金) 07:20:53.95ID:QEE8AS/N

955132人目の素数さん2018/05/04(金) 08:57:41.81ID:IIgQoC6i
体系数学のこの問題がわかりません
教えてください

>1から200までの自然数のうち、3で割って1余る数の和を求めよ


特に問題なのは項数が66にしかならないことです

956132人目の素数さん2018/05/04(金) 09:21:26.76ID:cDzFyf84
>>953
Aと2Aの間には必ず素数がある

957132人目の素数さん2018/05/04(金) 09:31:28.12ID:KGgH0rWt
>>955
等差数列の和は、初項と末項を足して項数を掛けたものを2で割る
台形の面積の公式と一緒に覚えると忘れない

958132人目の素数さん2018/05/04(金) 09:35:49.78ID:wRprcYkh
>>955
67ありますよね
その本が間違ってるんじゃないですか?

959132人目の素数さん2018/05/04(金) 09:56:42.65ID:IIgQoC6i
>>957
>>958
返信ありがとうございます。

じつは私がわからないのはどうして項数が67になるかなんです
問題集の回答は67です
66は私の計算です
初歩的ですみませんが教えてください

960132人目の素数さん2018/05/04(金) 09:57:42.48ID:ibwJJuKy
高校生の質問スレで聞けよ

961132人目の素数さん2018/05/04(金) 10:05:32.87ID:wRprcYkh
>>959
1,4,...,199
1+3×0,1+3×1,...,1+3×66

1から66までは66個ありますから、0から66なら67個ですね

962132人目の素数さん2018/05/04(金) 10:10:27.46ID:aiLPUPQd
( 199 - 1) / 3 = 66 だけど

963132人目の素数さん2018/05/04(金) 10:17:35.17ID:Pcm16i38
菩提達磨とマキシム・コンツェビッチはどっちの方が天才ですか?

964132人目の素数さん2018/05/04(金) 10:19:59.58ID:wRprcYkh
>>962
(4-1)/3=1ですね

965132人目の素数さん2018/05/04(金) 10:25:06.79ID:KGgH0rWt
>>959
>>961の説明で充分だが、詳しく知りたければ「植木算」について調べてみよう

966132人目の素数さん2018/05/04(金) 10:40:09.47ID:iZ0Jll+U
複素数平面上の単位円C上を点P(z)が動くとき、点Q(z^3-z)の軌跡を図示せよ。

967132人目の素数さん2018/05/04(金) 11:10:57.60ID:iZ0Jll+U
極限
lim[n→∞] {√n}{(2n,n)/(4^n)}
を求めよ。
ただし(k,m)で二項係数kCmを表す。

968132人目の素数さん2018/05/04(金) 12:44:09.86ID:35MdHy9b
>>966

z = e^(it) とおく。(0≦t<2π)
z^3 - z = (z - 1/z) zz
 = {e^(it) - e^(-it)} e^(2it)
 = 2sin(t)・e^(i(2t+π/2))
 = r・e^(iθ)
極座標では
 r =|2sin(t)|=|2sin{(θ-π/2)/2} |,
デカルト座標では
 (xx+yy)(2-xx-yy)^2 - (2y)^2 = 0,

正葉線〔n=1/2〕
「数学公式I」 岩波全書221 (1956) p.286-297 の第6.95図、第6.97図 を立てた形。

969132人目の素数さん2018/05/04(金) 12:45:53.32ID:cDzFyf84
>>959
1 から 100 まで整数は何個ありますか?
100-1=99個です、
のレベル

970132人目の素数さん2018/05/04(金) 13:35:28.29ID:35MdHy9b
>>967

sin の無限乗積表示(オイラー)
 sin(x) = x Π[k=1,∞] {1 - (x/kπ)^2}
で x=π/2 とおくと
 1 = (π/2) lim[n→∞] Π[k=1,n] {1 - (1/2k)^2}
  = (π/2) lim[n→∞] Π[k=1,n] (2k+1)(2k-1)/(4kk)
  = (π/2) {lim[n→∞] (2n+1)!! (2n-1)!!/(4^n)(n!)^2 }
  = (π/2) {lim[n→∞] (2n+1) [(2n-1)!!/(2^n・n!)]^2 }

(2n,n) = (2n)! / (n!)^2 = (2^n)(2n-1)!! / n!

√(2n+1)・(2n,n) / 4^n = √(2n+1) [(2n-1)!!/(2^n・n!)] → √(2/π),   (n→∞)

√n・(2n,n) / 4^n → 1/√π,  (n→∞)

スターリングの公式を使ってもよい。

971132人目の素数さん2018/05/04(金) 13:45:39.70ID:6+zMc3bH
ここって小中レベルの問題描いてもええんか?

972132人目の素数さん2018/05/04(金) 13:48:03.20ID:kJ9YqAjj
花丸

973132人目の素数さん2018/05/04(金) 13:55:54.02ID:35MdHy9b
>>970

 (2・2)/(1・3)×(4・4)/(3・5)×(6・6)/(5・7)……
 = Π[k=1,∞] (4kk) / {(2k+1)(2k-1)}
 = lim[n→∞] (4^n)(n!)^2 / {(2n+1)!!(2n-1)!!}
 = π/2,
をウォリス積(ウォリスの公式)というらしい。

974132人目の素数さん2018/05/04(金) 14:01:29.73ID:kJ9YqAjj
恥ずかしい奴

975132人目の素数さん2018/05/04(金) 14:07:29.84ID:g/nMvG85
漸化式を立てたいのですがなかなか上手く来ません。教えて下さいお願いします。
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

976132人目の素数さん2018/05/04(金) 15:09:16.63ID:+IXwEG9V
>>975
なぜ漸化式を?

977132人目の素数さん2018/05/04(金) 15:10:12.85ID:BO5Dgc/6
>>959

割られる方が割る方より値が小さい場合、
割られる数があまりになります。

1÷3の場合、割られる数1が余りになります

つまり、200÷3=66のほかに、1も3で割ると余りが1になる数になります
よって、全部で67個あることになります

978132人目の素数さん2018/05/04(金) 15:43:56.85ID:wBHTOaSW
すいません
np^n=p^n+1
を満たすpを教えてください

979132人目の素数さん2018/05/04(金) 15:54:23.09ID:DKsC4G9d
なし

980132人目の素数さん2018/05/04(金) 16:12:00.00ID:MAJRmw8P
この問題を教えてください
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

981132人目の素数さん2018/05/04(金) 16:42:59.32ID:x/Xbf5cf
ないんですか?

982132人目の素数さん2018/05/04(金) 17:15:08.61ID:iZ0Jll+U
正八面体Vの外接球B上に点Pをとり、PとVの各頂点とを結ぶ6本の線分を作る。
この6本の線分長の和が最大になるようなPの位置を1つ求めよ。

983132人目の素数さん2018/05/04(金) 18:15:41.72ID:fqBGkpaJ
>>982
外接球は原点中心、半径1とし、各頂点は軸上としてよい。同点P(√x,√y,√z) (x+y+z=1)としてよい。
f(t)=√(1+√(1+x))+ √(1-√(1+x))
とおけば
長さの和=√2(f(x)+f(y)+f(z))であり、fは上に凸だから長さの和が最大となるのはx=y=z=1/3のとき

984132人目の素数さん2018/05/04(金) 19:04:17.45ID:iZ0Jll+U
kを自然数とし、
S(n,k)=納i=1→n] i^k
と定める。
S(n,k)をS(n,m)(m=0,1,2,...,k-1)のうち必要なものを用いて表せ。

985132人目の素数さん2018/05/04(金) 20:06:48.38ID:MAJRmw8P
>>976
立てずに解けるのですか

>>all
67番の問題が自分のやり方が間違ってるせいか答えが合いません。自分のやり方は2枚目の画像のようにやっているのですが、どこが違うのかがわかりません。ちなみに答えは正六角形の一辺をxと置いてやっています。
僕は針金の長さをxと30-xに分けてやっています。
見づらくて申し訳ないです、見えない部分があれば言っていただければ補足します。
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚
分からない問題はここに書いてね442 	YouTube動画>1本 ->画像>31枚

986132人目の素数さん2018/05/04(金) 20:18:21.35ID:fqBGkpaJ
>>984
Σとか∫はok?

987132人目の素数さん2018/05/04(金) 20:26:08.06ID:NgyQPxlK
>>985
S_2の式が違う

988132人目の素数さん2018/05/04(金) 21:15:21.97ID:xpdF4vtx
717に関連して ですが

f(x)= ax^n + bx^(n-1) + cx^(n-2) + dx^(n-2) + ・・・ + eという.,「整数係数の」n次多項式関数について
∫_[0,1] { f(x) }^2 dx を考えるとき、これは
 a = 1, b = -1. c = d =…= e = 0
のときに最小となる
といえるでしょうか。

989132人目の素数さん2018/05/04(金) 21:59:34.39ID:Sfb9piGM
>>988
モニックな多項式の場合、それは間違い。

正解は
>>720

990132人目の素数さん2018/05/04(金) 22:23:24.06ID:3hdq6jse
>>988

きわめて直観的ですが
 f(0) = f(1) = 0
つまり
 f(x) = x(x-1)g(x)
の形が良く、特に
 f(x) = x^k (x-1)^(n-k)
で k と n-k が大きい(n/2 に近い)ものが良さげ。

ただし、それを追及しても「エレガントな解答」にはならん希ガス^^

>>720 は実係数の場合?

991132人目の素数さん2018/05/04(金) 22:25:44.28ID:Sfb9piGM
すまん、実数係数多項式と勘違いしてた。

でも >>988 は誤り。

反例 ∫[0,1](x^4 - 2 x^3 + x^2)^2dx=1/630 < ∫[0,1](x^4 - x^3)^2dx=1/252

992132人目の素数さん2018/05/04(金) 22:52:02.99ID:3hdq6jse
>>991 の例は n=4,f(x) = x^2 (x-1)^2 ですね^^

993132人目の素数さん2018/05/04(金) 22:53:36.31ID:xpdF4vtx
ありがつうございます
その路線でかんがえてみまする

994132人目の素数さん2018/05/04(金) 22:59:01.77ID:Gxgv9yMd
ある級数{an}の部分和の作る無限数列を{Sn}とする。
部分和{Sn}が収束して、その極限値がSである時、
級数{an}の和はSに等しい。
なんでですか?

995132人目の素数さん2018/05/04(金) 22:59:27.69ID:4aJcRcPk
定義です

996132人目の素数さん2018/05/04(金) 23:02:11.61ID:Sfb9piGM
>>990 の例も最小にはならないようです。

反例 ∫((x-1)^2 (2x-1)^2 x^2)^2dx=1/30030 < ∫((x-1)^3 x^3)^2dx=1/12012

997132人目の素数さん2018/05/04(金) 23:15:59.43ID:rvnZA+Ji
分からない問題はここに書いてね443
http://2chb.net/r/math/1525443316/

998132人目の素数さん2018/05/04(金) 23:16:55.49ID:xpdF4vtx
>>996
なんでこういう例がすぐに思いつくのですか

どんな風に見つけていらっしゃるのでしょうか

999132人目の素数さん2018/05/04(金) 23:44:27.12ID:3hdq6jse
>>998

むかし、たくさん零点をとったから(16字)

1000132人目の素数さん2018/05/05(土) 00:05:15.01ID:BUSpq5hZ
寝落ち


lud20220919143032ca
このスレへの固定リンク: http://5chb.net/r/math/1522418128/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

TOPへ TOPへ  

このエントリをはてなブックマークに追加現在登録者数177 ブックマークへ


全掲示板一覧 この掲示板へ 人気スレ | >50 >100 >200 >300 >500 >1000枚 新着画像

 ↓「分からない問題はここに書いてね442 YouTube動画>1本 ->画像>31枚 」を見た人も見ています:
分からない問題はここに書いてね422
分からない問題はここに書いてね432
分からない問題はここに書いてね452
分からない問題はここに書いてね428
分からない問題はここに書いてね438
分からない問題はここに書いてね447
分からない問題はここに書いてね416
分からない問題はここに書いてね445
分からない問題はここに書いてね454
分からない問題はここに書いてね453
分からない問題はここに書いてね420
分からない問題はここに書いてね433
分からない問題はここに書いてね441
分からない問題はここに書いてね449
分からない問題はここに書いてね437
分からない問題はここに書いてね455
分からない問題はここに書いてね424
分からない問題はここに書いてね436
分からない問題はここに書いてね427
分からない問題はここに書いてね456
分からない問題はここに書いてね444
分からない問題はここに書いてね456
分からない問題はここに書いてね448
分からない問題はここに書いてね446
分からない問題はここに書いてね440
分からない問題はここに書いてね478
分からない問題はここに書いてね419
分からない問題はここに書いてね450
分からない問題はここに書いてね443
分からない問題はここに書いてね431
分からない問題はここに書いてね435
分からない問題はここに書いてね439
分からない問題はここに書いてね434
分からない問題はここに書いてね451
分からない問題はここに書いてね430
分からない問題はここに書いてね417
分からない問題はここに書いてね418
分からない問題はここに書いてね426
分からない問題はここに書いてね462
分からない問題はここに書いてね429
分かった問題はここに書いてね2
分からない問題はここに書いてね463
分からない問題はここに書いてね423
分からない問題はここに書いてね421
分からない問題はここに書いてね415
分からない問題はここに書いてね465
分からない問題はここに書いてね458
分からない問題はここに書いてね457
分からない問題はここに書いてね425
分からない問題はここに書いてね459
分からない問題はここに書いてね460
分からない問題はここに書いてね461
分からない問題はここに書いてね464
分からない問題はここに書いてね 472
分からない問題はここに書いてね357
分からない問題はここに書いてね388
分からない問題はここに書いてね389
分からない問題はここに書いてね 466
分からない問題はここに書いてね 471
分からない問題はここに書いてね 467
分からない問題はここに書いてね211
分からない問題はここに書いてね 470
分からない問題はここに書いてね 469
23:24:14 up 13 days, 8:32, 0 users, load average: 8.74, 8.44, 8.29

in 0.075245141983032 sec @0.075245141983032@0b7 on 120313